
Report No. GTRI-TR-98-A5347-F

FEDERATION TESTING
PROCESS AND TOOLS

Federation Test and Management
Integration Support & Study (FTAM ISS)
Final Results Report

CDRL A002

April 30, 1998

Prepared For:
STRICOM
12350 Research Parkway
Orlando, FL 32826
Contract Number: N61339-97-K-0001

Prepared By:
David W. Roberts, Margaret M. Horst, J. Andrew Old
Distributed Simulation Systems Group
Computer Science and Information Technology Division
Information Technology & Telecommunications Laboratory

GEORGIA TECH RESEARCH INSTITUTE

GEORGIA INSTITUTE OF TECHNOLOGY
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

ATLANTA, GEORGIA 30332-0800

This Page Intentionally Left Blank

FOREWORD

This report was prepared by the FTAM ISS Team consisting of David W. Roberts
(Principal Investigator), Margaret Horst, and J. Andrew Old. Significant
contributions to the success of this project and to the final report were made by
the members of the Distributed Simulation Systems (DSS) Group, especially
Margaret Loper, Thom McLean, Kyle Crawford, Laura Burkhart, and Debbie
Esslinger. Very special thanks go to Amanda Crowell for her tireless effort on
editing the many versions of this final report. Thanks also go to Terry
Hilderbrand, the Computer Science and Information Technology Division Chief,
and Randolph Case, the Information Technology and Telecommunications Lab
Director, for their management guidance and oversight. Thanks also go to the
MAPS team, especially Mary McKenna, for their timely support.

The GTRI FTAM ISS team worked in support of the Federation Test System
(FTS) Integrated Development Team (IDT). The FTS IDT was made up of
STRICOM representatives and contractors from TASC and Acusoft. Many of the
ideas expressed in this report were either authored, revised, or significantly
influenced by the members of the IDT, including: (STRICOM) Rodney Long, Tom
Verscharen, Bernie Gajkowski; (Acusoft) Kevin Mullally, Jaime Cisneros; and
(TASC) Frank Valdes.

The FTS IDT also participated actively in the Simulation Interoperability
Standards Organization (SISO) in an effort to understand the broad simulation
testing requirements of the community and to publish the results of our research
and development efforts to as wide an audience as possible. In support of this
goal, David Roberts and Kevin Mullally served as Chair of the Simulation
Interoperability Workshop (SIW) Testing Forum. Many improvements have been
made to the process and tools that have been developed in the IDT thanks to the
feedback of the Testing Forum.

This Page Intentionally Left Blank

TABLE OF CONTENTS

1. SCOPE...1

2. INTRODUCTION..3

2.1 The Requirement for HLA ...3

2.2 Transition from DIS to HLA Standards ..3

3. FEDERATION TESTING SYSTEM (FTS) INTEGRATED DEVELOPMENT
TEAM (IDT)...5

3.1 Background ...5

3.2 Charter ..5

3.3 Development Process ...5

3.3.1 Requirements Development ..5

3.3.1.1 IDT 1 ..6

3.3.1.2 IDT 2 ..6

3.3.1.3 IDT 3 ..7

3.3.2 FTS Design Meetings..8

3.3.3 Implementation and Testing ..8

3.4 Leveraged Support of AMG Working Groups and SIW User Forums........8

3.5 Web Site for Simulation Testing ..9

4. FEDERATION TESTING PROCESS ...11

4.1 HLA Guideline Processes ...11

4.1.1 HLA Federation Development and Execution Process (FEDEP)11

4.1.1.1 FEDEP Version 1.1 ..11

4.1.1.2 Federation Testing within the FEDEP...13

4.1.1.3 RTI Initialization Data (RID)..14

4.1.1.4 Federation Execution Details (FED) ...14

4.1.1.5 Federation Execution Planning Workbook (FPW)14

4.1.2 HLA Compliance Testing ..14

4.2 Federation Testing Process ..16

4.2.1 Application Testing ..18

4.2.1.1 Definition ..18

4.2.1.2 Discussion..19

4.2.2 Integration Testing...20

4.2.2.1 Definition ..20

4.2.2.2 Discussion..20

4.2.3 Functional Testing ...22

4.2.3.1 Definition ..22

4.2.3.2 Discussion..23

4.2.4 Scenario Testing ...24

4.2.4.1 Definition ..24

4.2.4.2 Discussion..24

4.2.5 Other Types of Testing Within the Federation Testing Process26

4.2.5.1 Unit Testing ..26

4.2.5.2 Exception Testing...27

4.2.5.3 Performance Testing ..27

4.2.6 Automation of the End to End Federation Testing Process...............27

4.3 Relationship between Existing Processes and the Federation Testing
Process ...28

4.3.1 Relationship between Federation Testing and the HLA FEDEP........29

4.3.2 Relationship between Federation Testing & VV&A Processes..........30

4.3.3 Application of the Federation Testing Process to Federations32

5. DATA AND METHOD REQUIREMENTS FOR FEDERATION TESTING.34

5.1 Data Requirements for Federation Testing ...34

5.1.1 Federation Object Models (FOMs) ..34

5.1.1.1 Central FOM Library...35

5.1.1.2 RPR FOM...37

5.1.1.3 Relevance to Federation Testing..37

5.1.2 Object Interaction Protocols ..38

5.1.2.1 Background ..38

5.1.2.2 OIPs for Federation Testing ...38

5.1.2.3 Describing and Documenting OIPs ..39

5.1.2.4 Relevance to Federation Testing..39

5.1.3 Federation Agreements ...41

5.1.3.1 Overview ..43

5.1.3.2 Current State ..45

5.1.3.3 Relevance to Federation Testing..45

5.1.4 Fedex Planning Workbook (FPW)...46

5.1.4.1 Description ...46

5.1.4.2 Relevance to Federation Testing..48

5.2 Method Requrements for Federation Testing..48

5.2.1 Use of the Management Object Model (MOM)49

5.2.1.1 MOM and Federate Compliance Testing..49

5.2.1.2 MOM and Federation Testing...50

5.2.2 File Formats ..51

5.2.2.1 ModSAF RDR...51

5.2.2.2 JMASS File Formats...51

5.2.2.3 Data Interchange Formats (DIFs)...53

5.2.2.4 Self-Describing Data Interchange Formats (DIFs)..........................55

5.2.3 Test Procedures ..56

5.2.3.1 Test Procedures Format...56

5.2.3.2 Test Procedures Description ..58

5.2.3.3 Test Procedures Example ..58

5.2.4 Integration of HLA Tools Developed By Different Organizations58

Object Model Development Tool (OMDT) ..59

5.2.4.2 FPW Development Tool ...60

5.2.5 Use of the Internet to Facilitate Test Management............................60

5.2.5.1 Federate Conformance Testing Example.......................................60

5.2.5.2 Implications for Federation Testing and Future Directions62

6. TESTING TOOLS ..64

6.1 Testing Tools for Distributed Simulation..64

6.2 HLA Compliance Test Tools..66

6.2.1 Pre-Processor ...66

6.2.1.1 Conformance Cross-Checker ...66

6.2.1.2 Nominal Sequence Generator ..66

6.2.1.3 RepSOM Generator ...66

6.2.1.4 Test Sequence Generator ..67

6.2.2 Logger ...67

6.2.3 Post-Processor..67

6.3 Federation Test System (FTS) ..67

6.3.1 Test Federate ..69

6.3.2 Analysis Federate..70

6.3.3 Test Session Manager ..70

6.3.4 Exercise Support Tools ...71

6.3.5 Next Steps for the FTS..72

7. RECOMMENDATIONS..74

7.1 Policy Recommendations..74

7.1.1 Support Development of a DIS Federation..74

7.1.2 Continue Support of the SIW Testing Forum.....................................75

7.2 Technical Recommendations ..75

7.2.1 Encourage Expansion of the FEDEP to Describe Federation Testing
in More Detail..75

7.2.2 Promote the Development and Use of Interchange Formats for HLA
Data 75

7.2.2.1 FPW ...76

7.2.2.2 MSCs for OIPs ...76

7.2.2.3 Test Procedures ...76

7.2.2.4 Federation Agreements ..76

7.2.3 Use the Internet to Facilitate Test Management................................77

7.2.4 Encourage Applied Research to Investigate Functional and Scenario
Testing Requirements...77

7.2.5 Encourage Basic Research to Develop Approaches for the End-to-
End Federation Testing Automation..77

7.2.6 Promote the Practice of Providing Test Procedures with Standards
Proposals..78

7.2.7 Leverage Testing Research and Practice ...78

7.3 FTS Development Recommendations...78

7.3.1 Use the FTS to Support Federate and Tool Development.................79

7.3.2 Use the FTS to Support Federation Development.............................80

7.3.3 Develop Integration, Functional, and Scenario Testing Capabilities..80

7.4 Timeline...81

8. REFERENCES...82

9. APPENDIX...84

9.1 ModSAF RDR..84

9.2 Message Sequence Chart (MSC) Depicting a Fire and Detonate Series
between Two Federates..87

9.3 FTS Test Procedures Example ...90

9.4 Distributed Simulation Systems (DSS) Lab ...92

9.4.1 DSS Lab Environment Setup for Federation Tests............................92

9.4.1.1 Multiple RTI Versions ...92

9.4.1.2 DIS to HLA Migration..93

9.4.1.3 JMASS and Threat Radar Simulation Federates Used in IRAD
Project 93

9.4.2 HLA Distributed Simulation Interface Framework (DSIF)94

9.4.2.1 Current Status ..95

9.4.2.2 Relevance to Federation Testing..95

9.5 Acronym List..96

1

1. SCOPE

This report documents research supporting the US Army Simulation, Training
and Instrumentation Command (STRICOM) on the Federation Testing and
Management Integration Support and Study (FTAM ISS) BAA contract. The
contract covered the period from December 3, 1996 to April 30, 1998. The
purpose of the project was to support STRICOM in the understanding of the
requirements for HLA Testing, and to provide support to the design and
development of an HLA Federation Test tool.

There are two main goals of this report:

• to document the research accomplished in support of the Federation Test
System (FTS) Integrated Development Team (IDT) in process
development and FTS requirements and development support

• to document the history and current status of Federation Testing, as well
as the future requirements and necessary research areas for the FTS
team, STRICOM, and the distributed simulation community.

The report is organized into the following sections:

1. SCOPE: Describes the purpose and contents of this Final Report

2. INTRODUCTION: Introduces the reader to the context of the report.
Introduces the HLA and the issues involved with distributed simulation testing.

3. FEDERATION TESTING SYSTEM (FTS) INTEGRATED DEVELOPMENT
TEAM (IDT) : Describes the process that was used to define the requirements
for HLA Testing and to design the FTS.

4. FEDERATION TESTING PROCESS: Describes two guideline processes for
the HLA: the Federation Development and Execution Process (FEDEP) and
the HLA Compliance Testing process. Proposes a Federation Testing
Process, compares it to existing distributed simulation processes, and
describes an approach to automating the end-to-end process.

5. DATA AND METHOD REQUIREMENTS FOR FEDERATION TESTING:
Describes data requirements for Federation Testing, including Federation
Object Models (FOMs), Object Interaction Protocols, Federation Agreements,
and the Fedex Planning Workbook (FPW). Describes method requirements for
Federation Testing, including the use of the Management Object Model

2

(MOM), standardized file formats, standardized test procedures, the internet,
and integrated tools.

6. TESTING TOOLS: Describes test tools for distributed simulation, including
"legacy" test tools, HLA Federate Compliance Test Tools, and the Federation
Test System (FTS).

7. RECOMMENDATIONS: Describes recommendations from this research and
development effort, including policy recommendations, technical
recommendations, and FTS development recommendations. Presents a
timeline for context.

8. REFERENCES: Complete bibliographical list of documents referenced in this
report.

9. APPENDIX: Provides more detail on file formats, test procedures, the DSS lab
environment, the Distributed Simulation Interface Framework (DSIF), and
acronym list.

3

2. INTRODUCTION

The research described in this report was conducted to develop concepts,
processes, requirements, and tools to support HLA simulation testing. This
introduction section describes the context in which this research was conducted
by describing the HLA and its importance for the distributed simulation
community.

2.1 THE REQUIREMENT FOR HLA

In accordance with the Department of Defense (DoD) Modeling and Simulation
Master Plan, the Defense Modeling and Simulation Office (DMSO) led a DoD-
wide effort to create a common technical framework. The goal of this framework
is to facilitate the interoperability of models and simulations (M&S) among
themselves and with Command, Control, Communications, Computers, and
Intelligence (C4I) systems, as well as to promote the reuse of M&S components.
The HLA Baseline Definition was approved by the Under Secretary of Defense
for Acquisition and Technology [USD(A&T)] on 10 September 1996.

The memorandum signed by Dr. Paul Kaminski, USD(A&T), requires that all new
DoD simulation programs use the HLA and sets a timetable for the review of
simulations and development of migration plans for existing simulations. As of
FY99, DoD will provide no further funding for the development of non-compliant
simulations, and as of FY01, non-compliant simulations may not be used on DoD
projects.

In December 1997, HLA was accepted by the Executive Committee of the
Simulation Interoperability Standards Organization (SISO) and approved by the
IEEE for development as an IEEE standard. The standards are slated to be:

• Framework and Rules (1516)

• Federate Interface Specification (1516.1)

• Object Model Template Specification (1516.2).

With this step, the HLA is progressing from being a US DoD standard to an
international draft standard.

2.2 TRANSITION FROM DIS TO HLA STANDARDS

With the adoption of the HLA as a DoD mandate and as a future IEEE standard,
many research efforts are being conducted to understand what is required to
transition legacy simulations to the HLA and to develop new approaches to
distributed simulation development that will take advantage of the HLA

4

architecture. However, although many issues have changed with the advent of
the HLA, many have remained the same. These include:

• Bringing together disparate simulations and integrating them into a system
that supports the needs of the user is still a complex task.

• Detailed processes are still needed for the development of federations of
simulations.

• Obtaining interoperability between distributed simulations is still a system
engineering task that has to be addressed every time distributed
simulations are brought together for the first time or for a new purpose.

• Testing is needed to verify that simulations can be used for the intended
purpose.

• Test processes are needed to guide the development of federations of
simulations.

• Automated tools are needed to support the test process.

This report provides more details on these issues.

5

3. FEDERATION TESTING SYSTEM (FTS)
INTEGRATED DEVELOPMENT TEAM (IDT)

The purpose of this section is to document the evolutionary process that the
Federation Testing System (FTS) Integrated Development Team (IDT) went
through to develop a Federation Test Process and the FTS.

3.1 BACKGROUND

The IDT was formed in early February 1997 to tackle the complex issues
associated with the understanding of Federation Testing and the evolution of
existing Distributed Interactive Simulation (DIS) test tools to HLA test tools. The
group was made up of members from STRICOM, TASC, AcuSoft, and GTRI.

3.2 CHARTER

One of the first steps the IDT took was to draft a Concept of Operation (COO) to
outline its responsibilities, makeup, and products. The following goals were
developed (taken from the IDT Charter):

1. Document user and technical requirements for Federation Testing.

2. Document user and technical requirements for an FTS.

3. Leverage existing STRICOM development efforts (e.g. DTS, DISECT).

4. Capture and develop expertise among group members in all areas and
issues of Federation Testing.

5. Stay abreast of developing HLA technology issues and thrusts.

6. Provide feedback to the modeling and simulation (M&S) community on
issues related to federation development, including details on the process
that should be used for Federation Testing.

The IDT's objectives included developing the FTS and integrating it into the wider
HLA community. Thus, the emphasis was on supporting more than DIS and its
transition to HLA. The IDT focused on developing a process and tool that would
support other federations, as well.

3.3 DEVELOPMENT PROCESS

As referenced above, the development process was composed of three phases:
requirements, implementation, and testing.

3.3.1 Requirements Development

The first phase of the IDT process was to define the requirements for Federation
Testing and the development of a Federation Testing capability. This goal was

6

accomplished during several IDT meetings, which are described below to give
the reader an understanding of the steps taken to understand, define, and refine
the problem.

IDT meetings were held regularly to discuss the issues related to Federation
Testing and to develop strategies to accomplish the goals referenced in the
previous section. The following sections summarize the issues and discussions
of the first few critical IDT meetings.1

3.3.1.1 IDT 1

The first IDT meeting held on February 14, 1997 served as an introductory
meeting for members to get to know each other and begin developing the
Concept of Operation. Since the team members recognized early on that this
process would be a migration from the existing DIS test tools, a briefing on the
DIS Test Suite (DTS), its test process, and DISECT was given. Members also
discussed HLA standards to bring everyone up to speed on the issues related to
evolving from the DIS Architecture to the HLA. Finally, the members made an
initial attempt to decide what to test, with emphasis placed on designing the tests
in a way that would support other federation needs, not just those of the DIS.
They concluded that four areas needed to be addressed:

1. Federation Object Model (FOM) and Simulation Object Model (SOM)
objects and attributes

2. Object Interaction Protocols (OIPs)

3. Federation Agreements

4. Federation Required Execution Details (FRED)

The next step was to define the above areas, specifically the items that were not
well defined in the HLA documents: OIPs, Federation Agreements, and FRED.

3.3.1.2 IDT 2

The second IDT meeting was held on March 11, 1997. As an extension of the
first meeting, the focus was on clarifying the testing areas referenced above.
First, team members developed a sample OIP depicting a detect-and-destroy
sequence involving two tanks using a Message Sequence Chart (MSC) (See
Section 5.1.2 for more information on OIPs.). They also attempted to formalize
the FRED and eventually decided that three areas would be tested to meet
federation requirements: FOM/SOM objects and attributes, Federation
Agreements, and the FRED. With the testing areas agreed upon, the next task

1 The sections describing the IDTs were taken directly from the minutes of the IDT meetings.

7

was to define the process more concretely, including developing examples for
what would occur during each step of the process. Members also raised the
issue of what role the federate Capability Statement should play. They
concluded that the capability statement is more than just a SOM, but they were
still unclear on its exact format. Some time was spent developing a capability
statement.

3.3.1.3 IDT 3

The focus of the third IDT meeting was to discuss the HLA testing process and
begin discussing the FTS design. The HLA testing process consists of two main
parts: Compliance Testing (also called Federate Testing) and Federation Testing.
There are three subparts to Compliance Testing (originally taken from the HLA
Rules (DMSO, 1997e)):

• Federate compliance. The federate must conform to the following six
federate rules:

1. Provide HLA SOM in Object Model Template (OMT) format.

2. Update/Reflect Objects & Send/Receive Interactions.

3. Dynamically transfer and/or accept ownership of attributes.

4. Vary thresholds of attributes.

5. Manage local time to coordinate data exchange with federation
members.

6. Interact with Runtime Infrastructure (RTI) according to Interface
Specification (IFSpec).

• Federation compliance. The federation must conform to the following
federation rules:

1. HLA FOM in the OMT format

2. Object representations in federates, not RTI.

3. All runtime exchange of FOM data through RTI.

4. Federations interact with RTI according to IFSpec.

5. During execution, an attribute of an instance of an object shall
be owned by only one federate at a time.

• RTI compliance. The aspects of RTI compliance are as follows:

1. RTI shall interact with federations according to the IFSpec.

8

2. RTI provides Interface services to federates according to the
RTI functional specifications.

3. Object representations are in federates, not RTI.

4. RTI shall enforce the rule that an attribute of an object can only
be owned by one federate at a time.

In addition to Compliance Testing, there are four parts of Federation Testing:
Application Testing, Integration Testing, Functional Testing, and Scenario
Testing. The focus of the first phase of FTS development was to define and
develop the testing method for Application Testing.

As a result of several teleconferences, an initial chart was developed on the
components involved in Application Testing (See Section 6 for the results of the
multiple iterations of this diagram). The next step was to determine what would
be developed as part of the initial FTS prototype. Also at issue was the process
of test procedure development.

3.3.2 FTS Design Meetings

Once the basic concept for the FTS was established, the next step was
formalizing the design requirements for the system. The initial results of the
design meetings were two documents: the FTS Application Testing Process
Requirements Definition and the FTS Application Testing Process
System/Subsystem Design Description (S/SDD) (AcuSoft, 1997a) (AcuSoft,
1997b). These documents define the components of the FTS and its general
functionality, which the IDT has determined will be important to federation
developers.

3.3.3 Implementation and Testing

Currently, the IDT is involved in the implementation and testing phases of FTS
development. Currently the FTS developer is working with the Real-Time
Reference FOM (RPR FOM), but, note that the FTS is designed to work with any
FOM. Scripts are being written manually to control the actions of the test
federate, the federate under test (FUT), and the analysis federate. The focus of
the current effort is to develop a large number of scripts in support of the RPR
FOM, to serve as a "proof-of-principle" prototype in the development process.
Section 6 presents the results of the initial implementation efforts.

3.4 LEVERAGED SUPPORT OF AMG WORKING GROUPS AND SIW USER FORUMS

DMSO sponsors several working groups, which report to the Architecture
Management Group (AMG) about specific technical areas in the HLA. These
working groups are managed by the DMSO Chief Scientist, Dr. Judith Dahmann,
and GTRI leads and/or participates in four such groups. The technical areas of

9

these groups are mirrored in some of the User Forums at the Simulation
Interoperability Workshop (SIW) sponsored by the Simulation Interoperability
Standards Organization (SISO). GTRI also actively participates in the User
Forums, and several GTRI personnel have been elected to Paper Review Panels
for some Forums.

While the STRICOM contract with GTRI did not directly support these activities,
GTRI was able to leverage these efforts to provide updated information to the
FTS IDT in important technical areas. These four technical areas -- federation
development and object model tools, federation management and Management
Object Model (MOM), RTI performance, and Federate Testing -- are discussed in
more detail in later sections.

3.5 WEB SITE FOR SIMULATION TESTING

As part of an effort to support users of both the DIS Test Suite (DTS) and the
FTS, a World Wide Web site has been established at <http://www.ads-test.org>.
This site is intended to serve as a repository for simulation testing documents
and software and to provide a way to collect administrative and technical data
relevant to STRICOM’s testing activities.

In support of GTRI’s efforts under the Federation Test and Management contract,
a Web site also was developed to serve as a common area for interested parties
within GTRI’s Distributed Simulation Systems (DSS) group to obtain current and
relevant information on the FTAM project. This Web site contains a concise
summary of the purpose and progress made through the efforts of the FTS-IDT,
as well as relevant links and papers.

To best leverage the information in both Web sites, the best of the GTRI site was
integrated into the ADS-Test Site.

10

This Page Intentionally Left Blank

11

4. FEDERATION TESTING PROCESS

One of the goals of the FTAM project was to define a Federation Testing Process
that could be used to guide development of the FTS. This section describes the
proposed Federation Testing Process, describes the HLA processes within which
the Federation Test Process must fit, and compares the developed process with
existing distributed simulation processes. The HLA Federation Development and
Execution Process (FEDEP) and the HLA Conformance Testing Process are
described first to provide the context necessary for the Federation Testing
Process discussion.

4.1 HLA GUIDELINE PROCESSES

This section describes the HLA Federation Development and Execution Process
(FEDEP) and the HLA Conformance Testing Process. Over the course of the
FTAM program, these processes and supporting tools have gone through several
revisions. The versions described here are the latest releases of these
processes.

4.1.1 HLA Federation Development and Execution Process (FEDEP)

The HLA Federation Development and Execution Process (FEDEP) is intended
to "…identify and describe the sequence of activities necessary to construct HLA
federations." 2 The baseline version of the document is Version 1.0, dated 6
September 1996. (DMSO, 1996c)

4.1.1.1 FEDEP Version 1.1

At the Fall 1997 Simulation Interoperability Workshop (SIW), the Federation
Development Process User Forum (PROC) presented papers intended to further
clarify the FEDEP. Comments from the audience indicated a general feeling that
the entire process was still too complicated and cumbersome and that significant
improvements were needed in the presentation of the process. In response to
these comments, the Federation Development Working Group has published an
updated version of the FEDEP: Version 1.1, dated 9 December 1997. (DMSO,
1997b) Both documents can be found at the DMSO HLA web site.
<http://hla.dmso.mil>

2 In addition to the processes discussed in this section, it is also important to note the existence of
the DIS Exercise Management & Feedback (EMF) Recommended Practice document, which was
approved as IEEE Standard 1278.3. (IEEE, 1997a) This document establishes the EMF
requirements for participation in a DIS exercise and may also be useful in understanding the
steps that need to be taken to created a distributed simulation system.

12

Version 1.1 of the FEDEP presents a five-step federation development process:

• Requirements Definition: The federation sponsor and federation development
team must define and agree on a set of objectives, then document what must
be accomplished to achieve those objectives.

• Conceptual Model Development: A representation of the real-world domain of
interest (entities and tasks) is developed and described in terms of a set of
required objects and interactions.

• Federation Design: Federation participants are determined (if not previously
identified), and a FOM is developed to explicitly document information
exchange requirements and responsibilities.

• Federation Integration and Test: All necessary federation implementation
activities are performed, and testing is conducted to ensure interoperability
requirements are being met.

• Execution and Analysis Results: The federation is executed, outputs are
analyzed, and feedback is provided to the federation sponsor.

Figure 4.1 shows the latest version of the FEDEP.

Fed Object Model

Library of
SOMs

HLA FOM
Objectives

Development

Scenario
Development

Federation
Requirements/

Constraints

Common Fed

Execution Planning

Federation
Participants

Determine
suitability of

Provides
Basis for

Guides

Defines

Drives

Record

Feeds

Provides
input to

Data
Dictionary

Design

Feedback

Generates

Scenario Instances
-- Where
-- Who
-- Details

Fed Commonality

Fed A
Fed B

X Y

Scenario Data

Fed Development Products

Other
Resources

Modeling and Simulation Resource Repository

Sponsor
Needs

 FOMs
Library of

FederationConceptual
 Analysis

CMMS

Other Resources

ResultsFederation
Execution

Object Model Library

Determine
reuse of

Provides
input to

Drives

FEDEX Workbook

Product

Record

Federation
Integration
and Test

 FED

RID

Catalog
Reuseable
Products

-- Publish/Subscribe
-- Exec Environment
-- Data Routing
 ...

Provides
success
criteria for

Produces

Execution
Details

Figure 4.1. Federation Development and Execution Process Model

13

While the figure resembles prior FEDEP charts, there are some important
refinements, particularly related to the Model and Simulation Resource
Repository (MSRR), that reflect an increasing understanding of the practical
ways in which federations must be developed. The boxes in the FEDEP chart
can be mapped to the five-step process as indicated in Table 4.1 below

Requirements
Definition

Conceptual
Model
Development

Federation
Design

Federation
Integration
and Test

Execute
and Analyze
Results

Sponsor
Needs
Identification

Scenario
Development

Federation
Design

Execution
Planning

Federation
Execution

Objectives
Development

Conceptual
Analysis

Federation
Development

Federation
Integration
and Test

Results and
Feedback

Table 4.1. Mapping of FEDEP to Five-Step Process

4.1.1.2 Federation Testing within the FEDEP

Figure 4.2 below shows the portion of the FEDEP describing Federation Testing.

Fed Object Model HLA FOM

Common Fed

Execution Planning

Record

Scenario Instances
-- Where
-- Who
-- Details

Fed Commonality

Fed A
Fed B

X Y

Scenario Data

Fed Development Products

FEDEX Workbook

Product

Record

Federation
Integration
and Test

 FED

RID

-- Publish/Subscribe
-- Exec Environment
-- Data Routing
 ...

Execution
Details

Figure 4.2 Testing Within the FEDEP

The first step to creating a Federation Testing process is to see how it fits into the
overall FEDEP. Note that the current FEDEP defines several sources of

14

documented requirements that drive the Federation Testing process: the
Runtime Infrastructure (RTI) Initialization Data (RID), the Federation Execution
Details (FED), and the Federation Execution Planning Workbook (FPW).

4.1.1.3 RTI Initialization Data (RID)

The RID is the data needed by the RTI to operate -- the RTI's configuration file.
(DMSO, 1997c) It specifies the number of times the RTI should tick, what port
should be used to communicate, and the name of the machine on which the RTI
exec is running. Without a properly formatted RID file, the RTI will not function
properly. All tests that involve two or more federates must have a correct RID file
to start.

4.1.1.4 Federation Execution Details (FED)

The FED file is a text file representation of the Federation Object Model (FOM)
which is read into the RTI and federates. It specifies object classes, interactions,
attributes, and parameters. It also is formatted to show inheritance between
classes. The RTI uses the FED file to assign handles to objects. Thus, it is
important that federates within a federation have consistent FED files. Problems
with the FED file are often discovered during the initial phases of integration and
testing.

4.1.1.5 Federation Execution Planning Workbook (FPW)

The FPW is a replacement of the earlier concept of the Federation Required
Execution Details (FRED). The FPW describes general federation operating and
performance characteristics. Further work is needed in defining the FPW,
including the development of a file format and tool to facilitate creation and
management of the FPW. The FPW is described in detail in Section 5.1.4 in the
context of additional requirements for the automation of federation testing.

4.1.2 HLA Compliance Testing 3

The HLA Compliance Process has two parts, Conformance and Certification.
Conformance is the process of verifying that an implementation performs in
accordance with a particular standard (Knightson, 1993). For HLA, Conformance
is testing a federate to the Interface Specification (IFSpec) and Object Model
Template (OMT) standards, per the HLA Compliance Checklist (DMSO, 1996d).
Certification is the process of validating that an implementation has been tested

3 This section was adapted directly from the series of Compliance Testing papers published by
GTRI at SIW and DIS workshops and the "Federate Test Tools Operator Guide, Version 1.1,"
prepared for DMSO (DMSO, 1997a).

15

for Conformance. This means that once a federate under test (FUT) has
completed Conformance Testing, the results must be validated before being
recorded in a "certified products list" (e.g., the MSRR). Certification will be
executed by a Certification Agent (CA) who is accredited by the government.

For HLA compliance, the standards tested are the IFSpec and the OMT. In
accordance with Federate Compliance Checklist item 1, a federate must have a
Simulation Object Model (SOM) in the OMT format. The SOM Conformance
Test ensures that SOM data is consistent across tables. This test has three
checks: Parseability, Completeness, and Consistency. The services asserted in
the FUT’s Capability Statement (CS) also are cross-checked against services
implied by the FUT’s SOM to determine if the two specifications are consistent.

In accordance with Federate Compliance Checklist items 2-6, a federate must be
capable of supporting the services in the IFSpec, as required by the capabilities
specified in its SOM. In this context, capability refers to those services a federate
can invoke and/or respond to during a federation execution (e.g., ownership
transfer).

Federate Under Test Certification Agent

STEP 1

STEP 2

STEP 3

STEP 4

Request Information on Test Process and Submit Application

Check Compliance Database

Admin Procedures and Conformance Guide

Submit Conformance Notebook: SOM,Conformance Statement,
 Scenario Data

Conduct SOM and Conformance
Cross-Check Test; Generate Data

Return SOM Test Results, IF Test Data (Test Sequence)
and Test Date.

Submit Test Environment Data and .rid/.fed files;Confirm IF Test
Sequence and Date

Check Test Schedule

Confirm Test Info (Date, Sequence, Environment)

Execute IF Test
Log Date and Analyze, Generate
Test Results

Return IF Test Results and CSR

Figure 4.3. HLA Compliance Process

16

The Interface (IF) Test has two parts: the Nominal Test, which ensures that the
FUT can invoke and respond to all services for which it is capable, per its CS;
and the Representative SOM (RepSOM) Test, which ensures that the FUT is
capable of invoking and responding to services using the range of data contained
in its SOM. Figure 4.3 shows the HLA compliance process.

In Step 1, a federate developer requests information on the test process from the
official CA by completing an HLA test application on the Web at
<http://hlatest.msosa.dmso.mil>. The CA checks the official Compliance
Database to determine the federate’s priority for Compliance Testing and, if
approved, will respond with a user ID and password for conducting the test. It is
important to note that the test process is initiated by the federate developer, not
the CA, and it is the responsibility of the federate developer to ensure that the
FUT represents a stable, mature release of code. Ideally, the test process should
be initiated late in beta testing, so that the actual tests are performed on the
release version of the code.

In Step 2, the federate developer submits the Conformance Notebook, which
includes the SOM, the simulation Conformance Statement (CS), and optional
Scenario Data. The CA checks the SOM for conformance to the OMT (SOM
Conformance Test) and, if successful, checks the SOM against the CS for
consistency (Conformance Cross-Check). Test results are then returned to the
federate developer.

Assuming that the FUT successfully passes the SOM Conformance Test and
Conformance Cross-Check, the CA also returns a Test Sequence to the federate
developer for IF Testing. The Test Sequence will be based on the Scenario Data
submitted with the Conformance Notebook, if available. If the federate developer
chooses not to submit Scenario Data with the Conformance Notebook, the CA
will arbitrarily create a Test Sequence based on the SOM and CS. The CA will
propose a date and time for IF Testing based on other testing commitments in a
schedule maintained by the CA.

In Step 3, the federate developer will review the Test Sequence generated by the
CA and submit test environment data to the CA. Both the federate developer and
the CA will confirm a test date and time.

In Step 4, the IF Test is executed by the federate developer and the CA. The IF
Test has two parts: the Nominal Test, which ensures that the FUT can invoke
and respond to all services for which it is capable, per its CS; and the
Representative SOM (RepSOM) Test, which ensures that the FUT is capable of
invoking and responding to services using the range of data contained in its
SOM. The CA will log service data from the test, analyze the data, generate
results, and return a Certification Summary Report (CSR) to the federate

17

developer. The CSR is the official record of HLA compliance for the specific
version of the federate code tested.

See Section 6.2 for a discussion of the tools used in Conformance Testing.

4.2 FEDERATION TESTING PROCESS

Conformance Testing for the HLA has been defined very specifically in terms of
conformance with the HLA Rules, Interface Specification, and Object Model
Template. When a federate completes this process for the first time, it can be
safely assumed that the federate will still have to undergo federation testing in
order to participate in a federation.4 This is necessary to ensure that the federate
complies with the requirements of the federation. This federation testing will be
conducted by an organizational entity specified by the federation sponsor. 5

Testing a federation of distributed simulations to assure that it functions correctly
is a complex process. At the beginning of the FTAM program, there was no
generally accepted process to describe the steps needed to test a federation,
mainly because few federations at that time had evolved to the testing phase of
the Federation Execution and Development Process (FEDEP). Even though
more details have been discussed in a paper titled "FEDEP Phase III
Examination: Federation Testing, Execution and Feedback," which was
presented at the Fall 1997 Simulation Interoperability Workshop (SIW)
(Zimmerman & Harkrider, 1997), more guidance is still needed. The Federation
Test Process described in this section is a start at providing this more detailed
guidance. Section 4.3.1 compares the process presented here with the FEDEP
and other existing distributed simulation development processes.

The Federation Testing Process presented here is a multi-phase approach to
Federation Testing designed to:

• facilitate discussion of Federation Testing

4 Also see (Braudaway & Harkrider, 1997)
5 No assumptions are being made in this discussion about the size or goals of the federation.
Depending on the goal of the federation, the sponsor could be anyone from the federate
developer to the government program manager wanting to use the federate in a large distributed
exercise, experiment, or test. The point being emphasized here is that the HLA Compliance
Testing Process is often only the first step in getting a federate ready for participation in a
federation.

18

• provide useful information to federation developers to aid federation
development planning and execution

• provide a means to compare federation development processes, plans,
and experiences.

The process has four phases: Application Testing, Integration Testing, Functional
Testing, and Scenario Testing. It was presented at both the Spring and Fall 1997
Simulation Interoperability Workshops (SIW) See (Roberts et al., 1997b).

Figure 4.4 shows the Federation Test Process. The figure also shows the
relationship between Federate Conformance Testing conducted by DMSO and
the Federation Testing Process that will be described here. Initially, Federates
go through Conformance Testing to verify that they adhere to the HLA Rules for
Federates. This testing is different from the process a federate will undergo to
show that it can be used in a federation, which we label as Federation Testing.

Conformance Testing

Scenario Testing

Functional Testing

Integration Testing

Application Testing

Federate Testing
A DoD HLA federate must undergo
Conformance Testing to determine
compliance with the HLA.

Federation Testing
Federates must undergo Federation
Testing to verify adherence to a
specific federation’s requirements.

Figure 4.4. Federation Test Process

Each phase of the process is used to describe a kind of testing that needs to be
done that assumes and builds on the previous step in the process. But, it is

19

important to note that this process is not a strictly graduated process; once a
federate moves from Application to Integration Testing, it does not that mean that
no additional Application Tests will be conducted on that federate. In fact, during
a later phase, for example in Integration Testing, some Applications Tests may
need to be conducted again as more errors are found in the Federate Under Test
(FUT).

This discussion of Federation Testing assumes the most rigorous of federation
development requirements, where the federation is being developed from a mix
of different kinds of federates, modeling at different levels of fidelity. In addition,
some federates may already exist and have participated in previous federations,
while others are developed specifically to meet the needs of this federation. From
prior experience with the development of large SIMNET and DIS exercises, it is
well known that the more new software development that is required for the
construction of the federation, the more time and effort has to be put into
federation testing, VV&A, and operational rehearsal. This is the level of
requirement that drives this discussion of federation testing. However, by no
means does this mean that this process cannot be used for smaller, simpler, or
more persistent federations. (Dahmann, 1998) The federation developer has to
weigh the rigor of a formal test process with the specific requirements of the
federation and trim down the level of effort required for federation testing to those
steps that are useful. This approach to developing a comprehensive process that
can be tailored to meet the specific needs of a federation was also used in Lewis'
description of the Advanced Distributed Simulation (ADS) VV&A Process. (Lewis,
1997)

4.2.1 Application Testing

4.2.1.1 Definition

The first phase of Federation Testing is Application Testing. In this phase,
federates are tested individually to verify that they conform to federation
requirements. These requirements should take the form of the following data
inputs:

• FOM (Data Representations, Interactions, Interaction Protocols, Timing)

• Federation Agreements

• Fedex Performance Workbook (FPW) Data

These data requirements are discussed in more detail in Section 5.1.

4.2.1.2 Discussion

Application Testing as defined here takes the logical next step past the syntax
testing performed in the HLA Conformance Tests. In this testing phase, the

20

semantics of FOM data are tested; federates are tested to see they use the FOM
objects and interactions as they were intended. The correctness of data
representations, adherence to the order in which events should happen, and the
appropriateness of the representation of time are all addressed in this phase of
testing.

The definition of the different phases that make up the Federation Testing
borrows heavily from system engineering and software management techniques.
It makes sense to test individual federates as much as feasible before connecting
them to other federates. It also makes sense to limit the number of people
waiting for the results of a federate undergoing individual application testing to
just the developers and testers involved with that process. This is in contrast
with attempts to do individual application testing at the same time as integration
testing when other federate developers may be kept waiting for the individual
federate fixes. This approach of course should be tempered with the time, effort,
and value of accuracy constraints of the federation.

One of the keys to making Application Testing work is to develop test stubs that
feed the FUT with appropriate test data so the federate capabilities can be
verified. A "test federate" that is designed to be easily modifiable to use the
appropriate FOM should be used to help with this process. See Section 6.3 for a
discussion of the Federation Test System (FTS), which was designed to meet
this need. Conversely, a previously-tested federate could be used as the test
stub to support Application Testing, although this approach should be used with
caution.

In the case of a federation that will execute using multiple federates at multiple
sites, distributed team management is often an issue that has to be managed
actively. Often, integration of federates is done remotely with multiple sites being
connected to a central control site for long periods. In this case, if feasible, it is
wise to do as much Application Testing ahead of time at the developer's site, to
not waste valuable network testing time. In order for this to be feasible,
Federation Testing procedures should be developed to support individual
application testing so that the federation developers can conduct the tests for
themselves. If necessary, the application tests can be re-done formally by the
integration agent, but if already done beforehand, these tests can be performed
very quickly.

As an example, consider the situation where a tank simulation is undergoing
Application Testing. Two sample application-level tests that could be performed
include:

• Verify that the tank federate can update location object attributes with
appropriate data

21

• Verify that the tank federate can send fire and detonate interactions
with correct data

Application Testing addresses individual federate semantics, as opposed to
federation semantics, which are addressed in the next phase, Integration
Testing.

4.2.2 Integration Testing

4.2.2.1 Definition

Integration Testing addresses federation semantics. The purpose of Integration
Testing is to ensure that the following federation data requirements are satisfied
when multiple federates interact:

• FOM (Data Representations, Interactions, Interaction Protocols, Timing)

• Federation Agreements

• Fedex Performance Workbook (FPW) Data

Integration testing is the first opportunity for the federates to perform complex
federation behaviors with each other.

4.2.2.2 Discussion

In the Integration Test phase of the process, it is assumed that individual
federates have undergone Application Testing and individually meet federation
objectives for the role that they will perform. At this point, the federates are tested
together in a progressive manner which we will call 'progressive pair-wise to N-
wise' testing, where N is the number of federates that will be used in the
federation. Initially, pairs of federates should be tested; then a progressively
larger number of federates should be tested together, until in the final stage, all
the federates that will participate in the federation will be tested together.

The approach just described is the ideal case. In practice, this approach will not
work with very large numbers of federates, so a subset of the possible numbers
of test should be conducted, as feasible and practical. Integration Testing should
be conducted in an organized fashion by defining a test matrix which summarizes
the list of important federate interactions, then using this matrix to systematically
test each federate to federate interaction, until all the major interactions are
tested. The FOM should provide the data needed to understand the major
objects and interactions that can be used to develop the Integration Test Matrix.

In this stage of testing, many of the types of tests conducted in Application
Testing will be conducted again, albeit with the federates playing in the roles for
which they are required to meet federation objectives. As such, many of the

22

same test procedures used in Application Testing will also be reused for these
tests. In actuality, it is better to think about this test procedure reuse in the other
direction: it is often more practical for federation developers to first work on
Integration Test procedures before developing Application Test procedures.6

This is because it may be easier to break down multiple-federate tests into tests
designed to test a single federate's capabilities than to do it the other way
around.

As mentioned in the previous section, the management of integration tests for a
distributed federation execution at multiple sites is often a difficult process.
(Kanewske & Fine, 1998; Roberts, 1995) Accordingly, care has to be taken in the
design and timing of the tests. Decisions need to be made if the federate
developers all need to be brought together in person to conduct integration, or if
the test can be conducted remotely. Sometimes the people and management
issues involved in organizing integration testing can be as hard as the technical
issues. One of the enablers to successful distributed integration testing could be
the use of web-based test procedure management and trouble reporting. The
use of the web to support testing is described in Section 5.2.5.

Continuing with the tank federate example introduced in the last section, consider
the situation where two tank simulations are undergoing joint Integration Testing.
Some sample integration-level tests include:

• Verify that the tank federates receive each other's location object attribute
updates

• Verify that the tank federates interpret each other's location object attribute
updates (for example, by showing correct visual displays)

• Verify that the tank federates can send and receive fire and detonate
interactions

• Verify that the tank federates are advancing time correctly with respect to
each other's simulation (i.e., are two simulations in synch as required by
the timing requirements of the federation)

6 As will be discussed in most detail in the Scenario Testing section, it may be useful to develop
Scenario Test procedures first; then work down a level of detail to functional, integration, and
application tests. When this approach is used, a natural traceability is maintained and for
example, the relationship between a specific application test and a scenario test will be clear.

23

Integration Testing also needs to address the representation of the synthetic
environment as implemented by the federates. During this phase, correlation of
terrain and other synthetic environment databases need to be tested.

At the end of integration testing, all of the federates required for the federation
execution should be able to communicate meaningful information using the
objects and interactions of the FOM. At this point, the individual federates and
the federation as a whole can be tested with more rigor to verify whether they
meet the functional requirements of the federation. This next phase of the
Federation Testing Process is Functional Testing.

4.2.3 Functional Testing

4.2.3.1 Definition

In the Functional Testing phase of Federation Testing, individual federates and
the federation as a whole are tested to see that they can fulfill their intended
purpose. Functional Testing can only be performed after Integration Testing is
complete because it is only after all the federates can communicate using the
same FOM in the same synthetic environment that you can test their ability to
perform the function for which they are required.7 Using the same logic, this is
realistically the first stage of the testing process where the whole federation can
be tested to see if it will meet the requirements of the federation sponsor. It is at
this stage of the process that appropriate federation fidelity, accuracy, and
resolution issues are verified. In addition, at this stage, the detailed
implementation of algorithms could be tested. The main HLA data input for this
stage is:

• Federation Requirements

7 Functional Testing is related, but more complex than the term 'Unit Testing' used in software
engineering. Unit Testing in this context describes the steps that the federate developer takes
during the development of the federate to verify that it meets its stated design requirements. See
Section 4.2.5 for more on Unit Testing. Although this Unit Testing is valuable, and even required,
it still does not go to the extent needed for federation Functional Tests.

In addition, there is another kind of functional testing that should occur between Unit Testing and
Functional Testing; labeled by Roberts in "Integration Test of Distributed Interactive Simulation
Exercises" as the pre-integration functional test. (Roberts, 1995) During this test, which occurs
before federation integration, the user of the system verifies that the FUT can perform the
function required in the federation by watching the federate in stand-alone mode performing the
function. For example, if the requirement is for the tank simulator to have voice communications
capability, this functionality should be verified before integrating the federate. As has been
demonstrated by experience in War Breaker DIS exercises, if "…deficiencies in the basic
functionality of a simulator are found this early in the process, then there is possibly enough time
to fix them before the scheduled exercise." (Roberts, 1995)

24

These federation requirements could be formal or informal, but must be used to
drive Functional Testing of the federation.

4.2.3.2 Discussion

Functional Testing is the third step of Federation Testing. In this phase of testing,
it is assumed that the federates under test (FUTs) have successfully completed
HLA Conformance, Application, and Integration Testing. This assumption is
required because of the underlying concepts of distributed simulation. In a
distributed simulation system, each component of the system only simulates a
part of the real world. The simulation components rely on each other to form a
complete virtual world in which they can interact. Based on this reasoning, it is
only after all the federates required for the federation are integrated into the
same virtual environment that functional verification of the federation can occur.

Functional Testing is the first phase of the process where issues such as training
requirements, usability, and fair fight are tested. Although these issues will be
addressed in the federation and individual federate design processes, this is the
first phase of the Federation Testing process where they can be tested.

Extending the example started in the previous sections, it is at this stage of the
process where the tank federate would undergo testing to verify that it can play
the role of a tank to a level of fidelity and appropriateness to meet the needs of
the federation. Sample tests could include:

• Can the operator of the tank simulator or the ModSAF tank simulation use
its infrared sights in a night-time scenario to see enemy targets on the
battlefield at the correct distance, accounting for the overcast skies and
the phase of the moon?

• Can the tank simulation/simulator fire a specific munition at the correct
sustained rate and be restricted by realistic ammunition logistics re-supply
limitations?

• Can the tank semi-automated forces simulation maneuver correctly
around obstacles, taking into account tactically correct maneuvers?

Obviously, from the examples, it can be seen that the procedures that would be
used in a simulator would be different than would be used for semi-automated
forces simulation (ModSAF), and both of these would be different from what be
used for a live, instrumented tank. For example, in ModSAF, human behaviors
are encoded in the simulation so these behaviors have to be tested to see if they
meet the tactical correctness requirements of the federation. In a simulator, the
operator provides this tactical behavior while the tank simulator provides a virtual
representation of the vehicle and weapon systems behavior. As another
example, for a ModSAF simulation, the operator does not have to tell the tank to
fire on the opposing tanks. The operator only has to specify that a tank has free

25

fire permission, and the tank will decide on its own whether to fire on another.
Additionally, if the tank is told to travel to a point on the other side of a river, it will
automatically change its course to travel across a bridge that isn't on its original
route. The key at this stage of Federation Testing is to test based on:

• the requirements of the federation

• the role the federates have to play in the federation

• and the capabilities of each individual federate to perform the function.

4.2.4 Scenario Testing

4.2.4.1 Definition

The final step in the Federation Testing Process is Scenario Testing. It is at this
phase of the process where the scenario for the federation exercise, test, or
experiment is used to verify that the federation as assembled will be able to meet
its original goals. This phase can also be dubbed operational testing, where the
federation is used to practice the scenario called for in the federation design. As
mentioned, the main HLA data input for Scenario Testing is the:

• Federation Scenario

The scenario will drive the specific test procedures used in this phase.

4.2.4.2 Discussion

Scenario Testing is more focused than Functional Testing, because only the
scenario for the specified federation execution will be used to drive testing. This
is as opposed to Functional Testing where the basic capabilities of federates are
tested according to the federate's role in the federation.

Using these definitions, if all prior phases of Federation Testing have been
completed and no changes have been made in the federates, then multiple
scenarios could be run in multiple federation executions and only Scenario
Testing would be required to support these efforts. This is the ideal case of reuse
and is the idea that supports the need and use of persistent federations that are
maintained to meet an ongoing federation need.

It is at this phase of the Federation Testing process where federates will attempt
to perform as they would in a real federation execution. In this dress rehearsal,
all the kinks are worked out of the federation as well as the scenario. There may
be times when the scenario should be changed to reflect the capabilities of the
federates being used, as long as the federation requirements are still being met.

26

Continuing the tank federate example started in previous sections and assume a
simple scenario as follows:

There are two tanks in a training scenario. Tank A is to travel to a point
approximately one mile away from the assigned objective X. Behind hill Y
along the route to objective X and hidden from view lies tank B. Initially,
neither tank can detect the other. At some point, the tanks will detect
each other, and engage or retreat. Assume the objective of the scenario is
weapon system training for the operators in the simulator which is playing
Tank A.

In this simple case, Scenario Testing will verify that the federates involved can
perform the roles assigned to them in the scenario. For example, if tank B is
being played by a ModSAF system, the test should verify that the tactics
parameters loaded in the simulation meet the needs of the training being
conducted. If Functional Testing was done well, we could assume that the
ModSAF simulation can perform in the prescribed role, but its ability to perform in
this specific scenario using the right parameter input files will be tested in
Scenario Testing.

In the above example, there are only two tanks involved in the scenario. Testing
whether these two tanks passed the Scenario Test is straightforward. However,
what if there were a large number of platforms in the scenario? For instance,
what if the test involved a platoon of tanks taking a hill? How should the test be
conducted to show that the federation could meet the requirements specified in
the scenario? For this case, there could be an agreed-upon statistical threshold
for the platoon of tanks to pass the test. For example, for a federation simulating
a platoon of tanks taking a hill, the Scenario Test would be successful if x% of
the tanks reached the top of the hill. Test procedures for scenario testing need to
support these types of scenario acceptance thresholds.

One conclusion that should be immediately obvious from this discussion is the
need for automated tools to support this process.8 Even though subject matter
experts can view simulation behavior using representative visual displays, it
would be difficult to perform any of these tests systematically with a large number
of federates. Tools such as the analysis federate component of the Federation
Test System (FTS) would be useful to meet this testing automation requirement.

As has been shown in this discussion, several data inputs are needed to support
the automaton of this type of testing. These include:

8 Additional support for this assertion is shown by the experience gained from early federation
prototypes. (Graffagnini, 1997).

27

• Scenario descriptions in a computer-readable formats

• Scenario requirements that define acceptance thresholds for scenario
behavior

• Scenario test procedures in computer readable formats that can use
the scenario descriptions and acceptance thresholds

As was discussed in an earlier section, it may be useful to develop Scenario Test
procedures first; then work down a level of detail to Functional, Integration, and
Application tests. When this approach is used, a natural traceability is maintained
and for example, the relationship between a specific application test and a
scenario test will be clear. (For more on data requirements and formats as well
as method requirements for Federation Testing, see Section 5.1.)

4.2.5 Other Types of Testing Within the Federation Testing Process

The Federation Testing Process as described contains several testing phases,
namely Application Testing, Integration Testing, Functional Testing, and Scenario
Testing. Each of the sections describing these test phases discussed the types of
tests that are conducted. However, some types of testing that are common to
software and system engineering may have been omitted from the discussion.
This section is designed to address that deficiency in the Federation Testing
Process description. The following paragraphs define common 'types' of testing
and describe where they would be used in the overall Federation Testing
Process.

4.2.5.1 Unit Testing

Unit Testing describes the steps that the federate developer takes during the
development of the federate to verify that it meets the need for which it was
originally intended. (Clay, Roberts, & Stueve, 1995) In unit testing, the federate
developer will test the federate using stub code to represent its interaction with
other federates. It is likely that the developer will also test with a duplicate copy of
the federate as well as any other federate that is available to help with the sanity
check. Unit testing should be conducted by the federate development
organization before submitting the federate for Federation Testing. Unit testing
should also be conducted when a change is made in the federate during
Federation Testing to meet the needs of the federation. It is important to
distinguish between unit testing, which is conducted by the federate development
organization, and Application Testing that is a part of federation's Federation Test
process. As discussed earlier, Application Test procedures could and should be
provided to the federate developers ahead of time so that they can be performed
independently. However, this still does not alleviate the requirement of the
federation to verify the basic data exchange and comprehension requirements
that are tested in Application Testing.

28

4.2.5.2 Exception Testing

Exception Testing is a method of testing where the approach is to test all the
things that the system should not do. For example, with DIS testing, there is a
list of common mistakes that are made in implementing the standard. The
process of verifying that the simulation handles these common mistakes correctly
would be called exception testing. Exception testing as described here is a useful
test method that could and should be used throughout the Federation Testing
Process.

4.2.5.3 Performance Testing

Performance Testing in the context of Federation Testing is the verification that
the federation, individual federates, and the supporting infrastructure
(workstations, RTI, and communications network) meet the performance
requirements of the federation. Performance testing is applicable to all phases of
the Federation Testing process. The testing of network, RTI, and application
latencies can all be considered performance testing. See the "High Level
Architecture (HLA) Performance Framework" paper in the Spring 97 SIW
Proceedings for more information on performance measurement and testing
approaches for the HLA. (Dahmann et al., 1997) Also, see (McKee, 1998; White,
1998; Wuerfel, 1998)

Another related testing term is Stress Testing, which is performance testing
conducted by increasingly loading parts of the system to see if and when it
breaks. For example, CPU and LAN/WAN loading tests can be called stress
tests.

4.2.6 Automation of the End to End Federation Testing Process

One idea that has been suggested by several preceding sections is the need for
automation to support Federation Testing. One of the main benefits of
automating Federation Testing would be the ability to reduce the number of
separate testing sessions by combining different types of tests into the same test
session. The ultimate goal would be to run the FUTs simply through a scenario-
level test and have the test system automatically verify the required
Conformance, Application, Integration, and Functional Tests. The key to realizing
this goal is understanding the relationships between the phases of testing and
the data requirements of each process phase. Unfortunately, these relationships
are not straightforward and vary depending on the federation.

In Scenario Testing, the data being tested is scenario data, which could consist
of the following:

29

• high level objectives (example: mission rehearsal operations orders,
training objectives, test objectives, experiment hypotheses)

• initial conditions of the objects

• time-phased (objective, entity, state) -tuples

The objective of Scenario Testing in this instance would be to verify that each
part of the time-phased objectives are potentially achievable by the simulations
being tested, based on the high level objectives and the initial conditions.

With the above scenario definition, Functional Testing would verify that a
simulation can perform the required role specified in the scenario. For example,
in a training scenario where the goal is to practice naval aviation operations
under stress, the sample objective could be: Fixed Wing Aircraft A, take off from
aircraft carrier 1, flying at night, rendezvous with tanker H, refuel in flight, avoid
surface-to-air-missile (SAMs), attack target 18, return to base. In this case, the
data that could need to be verified in Functional Testing include: verification that
the aircraft simulator can perform takeoffs, function in night time operations,
refuel, and avoid SAMs effectively enough for the satisfaction of the user of the
training exercises.

Sample integration data that could be verified in relation to the above Functional
Tests include: verification that the plane federate and aircraft carrier federate can
exchange position updates and collision interactions as necessary so that the
takeoff interaction can be represented to the satisfaction of the interoperating
simulations.

In Application Testing, the following data could be tested to support the
integration described above: verification that the plane federate can update its
position attributes at an appropriate rate and send collision interactions at the
appropriate time.

In HLA Conformance Testing, appropriate testing data in support of the
Integration Testing described above would include verification that the plane
federate can perform the Publish Object and Update Attribute services correctly.

As shown, the data tested in the above example are very much correlated. In
fact, with careful design of the testing process, each higher level test could be
made up of atomic tests of the underlying tests. The question that must be
addressed is: How can we take advantage of the hierarchical nature of the above
testing phases so that some steps of the process can be automated, thereby
reducing the time and resources needed to perform testing?

30

4.3 RELATIONSHIP BETWEEN EXISTING PROCESSES AND THE FEDERATION TESTING
PROCESS

To stimulate discussion on Federation Testing, it was important to compare the
above model to others currently being used. The goal is for this comparison to
help in refining the Federation Testing process for future efforts, as well as point
out important components that may be missing from the process as proposed.
The following sections describe the relationship between the Federation Testing
process and the FEDEP; between the Federation Testing and VV&A processes;
and Simulation Testing and Test and Evaluation.

4.3.1 Relationship between Federation Testing and the HLA FEDEP

In the current version of the FEDEP, little is said about the implementation and
testing phases. These phases were discussed in more detail in a paper titled
"FEDEP Phase III Examination: Federation Testing, Execution and Feedback,"
which was presented at the Fall 1997 Simulation Interoperability Workshop (SIW)
(Zimmerman & Harkrider, 1997). A representation of the relationship between
Federation Testing and the FEDEP is shown in Figure 4.5.

In this paper, Federation Testing is described as a function of three parts:
Compliance Testing, Integration Testing, and Federation Testing. FEDEP
Compliance Testing refers to the process of testing the application for the correct
implementation of HLA requirements. Likewise, Compliance Testing in the
Federation Test process consists of testing for conformance to the IFSpec and
OMT. Thus, there is a straightforward comparison between FEDEP Compliance
Testing as defined in the paper referenced above and Compliance Testing as
part of the Federation Test process we are defining. It is important to note that in
FEDEP Compliance Testing, the syntactic elements of the FOM are tested and
not the semantic elements.

FEDEP Integration Testing refers to "…bringing all of the pieces of the federation
together and assessing their ability to interoperate." (Zimmerman & Harkrider,
1997). This step can be compared directly to the Integration Testing step of the
Federation Test process. The FEDEP testing process does not specifically call
out the need for application testing as defined in the federation testing process.
Before Integration Testing can occur, it is important to test the semantic aspects
of the FOM for individual federates so problems can be isolated and corrected. It
would be more difficult to do this in a ‘big bang’ testing integration testing
approach.

The final testing step in the FEDEP is called Federation Testing. This final
interoperability test assesses a federation’s ability to meet the user’s objective for
the test. The FEDEP paper describes this step as made up of four substeps:
objective, scenario, VV&A requirements, and security requirements. (See Figure
4.5) Objective testing is related directly to the Functional Testing step of the

31

Federation Test Process. Likewise, Scenario Testing is related directly to the
Scenario Testing step. As opposed to what is explained in the paper, both VV&A
and security should not be limited to the Federation Testing phase of the FEDEP.
VV&A and security need to be involved throughout the entire testing process (as
explained in the following section), as well as throughout the FEDEP process.

Compliance Testing

Federation Testing

Integration Testing

Federate Software
Test/ V&V

Compliance Test

Application Test

Integration Test

Functional Test

Scenario Test

Performance
Testing

HLA Federation Testing

Security
Requirements

VV&A Requirements

Scenario

Objectives

X

Figure 4.5. Federation Testing Process and FEDEP Comparison

Thus, a comparison between the Federation Testing Process presented in this
report and the current FEDEP testing process shows that the former covers all
aspects of the latter. In fact, there are certain components that the current
FEDEP leaves out, such as the need for one-on-one semantic testing before
Integration Testing. Also, as alluded to previously, the current inputs into
Federation Testing are not enough to perform complete testing. (Certain inputs,
such as OIPs, are explained in later sections.) Further refinement of the FEDEP
is needed to cover the details necessary for effective Federate and Federation
Testing.

32

4.3.2 Relationship between Federation Testing & VV&A Processes

Discussions in the VV&A and Test Forums during the Spring 97 SIW reinforced
the need for a process that describes Federation Testing steps. This discussion
raised questions about how testing steps fit into the VV&A. This section is
designed to address these questions.

Several resources exist for understanding VV&A in the context of HLA. The IEEE
Recommended Practice for Distributed Interactive Simulation--Verification,
Validation, and Accreditation (IEEE, 1997b) establishes the recommended VV&A
approach for participants in a DIS exercise and provides "how to" procedures for
planning and conducting DIS exercise VV&A. A DoD (VV&A) Recommended
Practices Guide also has been published. It provides background and information
on principles, processes, and techniques recommended for use in DoD VV&A
efforts that support program initiatives in the analysis, acquisition, and training
communities. This guide can be found on the Web at
<http://www.dmso.mil/docslib/mspolicy/vva/rpg/> (DMSO, 1996a). It supports the
implementation of DoD Instruction 5000.61, titled "DoD Modeling and Simulation
(M&S) Verification, Validation, and Accreditation (VV&A)," April 29, 1996, which
can be found on the Web at <http://www.dmso.mil/docslib/mspolicy/
vva/dodifin.doc> (DoD, 1996).

An appropriate way of showing the relationships between Federation Testing and
VV&A is to compare the processes. We do this by comparing the Federation
Testing Process described in this report and the IEEE VV&A process for
advanced distributed simulation, (ADS), summarized and discussed in (Lewis,
1997).

VV&A is a process that should span the entire life cycle of a federation. In the
ADS development model, VV&A is made up of two phases: the Planning and
Requirements phase and the Design and Development phase. Subsequently,
the Design and Development phase is made up of several stages: Conceptual
Model, Preliminary Design, Detailed Design, Construction and Assembly, and
Integration and Test. Federation Testing only relates to the Construction and
Assembly process and the Integration and Test process. All of the other stages
fall under other phases of the FEDEP model (i.e. Conceptual Analysis and
Federation Design).

Thus, the focus of this section is to depict the relationship between Federation
Testing and the VV&A steps involved in the Construction and Assembly and the
Integration and Test stages of the ADS development model. A visual
representation of this relationship is shown in Figure 4.6.

33

Federate Software
Test/ V&V

Compliance Test

Application Test

Integration Test

Functional Test

Scenario Test

Performance
Testing

HLA Federation TestingConceptual Model

Detailed Design

Preliminary Design

Construction &
Assembly

Integration & Test

Data Certification/
Authentication

Synthetic
Environment Tests

Comm/Network
Tests

Compliance Tests

ComponentTests

Sensitivity Tests

Boundary Tests

Load Tests

Behavioral Analysis
Tests

Netted
Interoperability of
Components Tests

Players & Users

ADS Verification
Level Tests

ADS Validation
Level Tests

Stages are covered
in the Conceptual

Analysis and
Federation Design
stages of FEDEP

ADS Process Development Model

Figure 4.6. Federation Testing and VV&A/ADS Process Comparison

The Construction and Assembly stage is the process of putting the federation
together to bring it up to working order. The Lewis paper outlines six verification
levels involved in this stage: Component Test, Compliance Test,
Communication/Network Test, Data Certification/Authentication, Synthetic
Environment Tests, and Players and Users. Since the Component Test
assesses the accuracy of the simulation code, there is a direct relationship to the
what is commonly known as software Unit Tests. These tests are conducted by
the federate developer before joining a federation, and so are in general outside
the scope of Federation Testing as described in this report. This tests have been
added the Federation Testing Process diagram above for convenience of this
discussion and have been labeled Federate Software Tests.

Compliance Testing involves looking at the data formats for conformance to the
specifications. Thus, this test has a direct relationship to the Compliance testing
phase of Federation Testing (even though if data content is verified, these tests
should be termed application testing.) The Communication/Network Test
ensures that the network is working properly. This test is covered under
Performance Testing in the Federation Testing Process, which involves CPU
loading, LAN/WAN loading, latencies, and time synchronization. Since Data
Certification/Authentication tests the correctness of data as it is passed between

34

federates, this process covers several areas of Federation Testing. The
Federate Software stage verifies that a simulation is making the correct
calculations. The Compliance Test verifies that the data is sent in the right
format (i.e. HLA IFSpecs), and the Application Test verifies that the data sent is
meaningful to the federation (i.e. semantic). The Synthetic Environment Tests
assess whether the different federates can share a common environment. These
tests typically involve two federates. When two or more federates are involved,
there is a direct link between these tests and Functional Testing, which tests for
accurate environment representation, among other things.

The Integration Test phase of the Federation Testing Process verifies the
functional and performance aspects of federates within a federation and validates
the interactions, behaviors, and effectiveness of the federates within an exercise
or scenario. Thus, when tests are run on only portions of the federation, this
phase falls under the verification level. When the entire federation is tested, it
falls under validation. The first step of validation is the Netted Interoperability of
Components Test, which ensures that the entire federation is communicating and
interacting correctly. This test is comparable to the Integration and Functional
Tests. The Behavioral Analysis Tests simply assess the behavior of the model
and whether it depicts the real world to the level needed. These tests are linked
directly to the Scenario Testing process of Federation Testing. The final three
stages of validation are Load Tests, Sensitivity Tests, and Boundary Tests, which
are linked directly to Performance Testing.

Thus, there exists an important relationship between VV&A and Federation
Testing. The framework that was developed to verify, validate and accredit
Advanced Distributed Simulations (ADS) and HLA Federation Testing relate in
that all aspects VV&A discussed seem to be covered at some stage in the testing
lifecycle. Further refinement of both the VV&A process and the Federation
Testing process is needed to make it simpler for the user to understand more
clearly how the processes are related.

4.3.3 Application of the Federation Testing Process to Federations

Another important comparison that needs to be made is between the Federation
Testing Process and existing federation testing processes. This has (effectively)
already been done for the HLA protofederations in Section 4.3.1 because the
FEDEP process was developed from the lessons learned by the HLA
protofederations.

35

Due to the relative immaturity of existing federations, not much formal federation
testing has been done.9 Because of this, we compare the Federation Testing
Process with the Joint Training Confederation (JTC), a mature set of distributed
simulations using the Aggregate Level Simulation Protocol (ALSP), which is
scheduled for HLA migration.

The ALSP JTC testing process is described in "The ALSP Joint Training
Confederation: A Case Study of Federation Testing", a paper presented at the
Fall 1997 SIW. (Page & Babineau, 1997) Figure 4.7 is a visual representation of
the relationship between the ALSP JTC Federation Testing process and HLA
Federation Testing.

Component Test

Load Test

Operational Test

Functional Test

Technical Test

Types of Tests

Component Test

Functional Interface
Integration

All-Actor Integration

Confederation Test

Test Phases

Federate Software
Test/ V&V

Compliance Test

Application Test

Integration Test

Functional Test

Scenario Test

Performance
Testing

ALSP JTC Federation Testing

HLA Federation Testing

Figure 4.7. ALSP JTC Testing and the Federation Testing Process

The ALSP JTC Federation Testing process is made up of four phases:
Component Test, Functional Interface Integration (FII), All-Actor Integration
(AAI), and Confederation Test. Analogous to these phases are five different test
plans: Component, Technical, Functional, Operational, and Load Tests.

9 With the exception of STOW 97 (Kanewske & Fine, 1998) and the HLA C2 Experiment. (AEgis,
1997).

36

As shown in the figure, many relationships between the Federation Testing
process and the test phases and/or test plans of the ALSP JTC can be observed.
We first discuss the 'Types of Tests' column in the figure above. This set of
items is really the list of Test Plans developed for the confederation. Specifically,
the JTC Component Test Plan refers to individual Verification and Validation
(V&V) that must take place on the simulations. These tests can be compared
directly to the unit testing described in Section 4.2.5. Next, the Technical Test
Plan deals with "matters of conformance and compliance with the ALSP
protocols," (Page & Babineau, 1997) which is related directly to the Compliance
Test. The JTC Functional Test Plan is designed to verify that the specification for
the confederation has been correctly implemented. This relates directly with
Application Testing in the Federation Testing Process. The JTC Operational Test
Plan evaluates the behavior of the JTC against a set of predefined objectives and
has a direct link to Scenario Testing. Finally, the Load Testing Plan, which
evaluates the performance of the FTC, is related to Performance Testing in the
Federation Testing process. Some important missing links in this discussion are
the fact that there is no obvious link between the test plans and Integration and
Functional Tests in the Federation Test Process. This may be confusing, but is
not a real issue, because these tests are covered in the actual test events that
are described in the following paragraph.

As indicated in the Paige and Babineau paper, the JTC process is integrated and
tested in four stages. Component Testing, as explained above, can be described
as federate Unit Testing or as indicated in the figure above, Federate Software
Testing/V&V. The Functional Interface Integration (FII) stage tests how subsets
of the JTC federation communicate, which is directly related to Integration
Testing. The All Actor Integration (AAI) Test focuses on whether the federation
as a whole meets certain specifications, thus falling under Functional and
Scenario Testing. Finally, Confederation Testing involves assessing the realism
of the federation as it operates and has a direct relation to Scenario Testing.

37

5. DATA AND METHOD REQUIREMENTS FOR FEDERATION
TESTING

Section 4.2 discussed a federation testing process which is proposed to guide
the federation developer in testing whether the federation meets the needs of the
federation user. Section 5, Data and Method Requirements for Federation
Testing, discusses the data and method enablers which will need to be in place
in order for an automated federation testing process to be successful.

The section on data requirements reiterates the data requirements discussed in
the Federation Test Process. Specifically, this section discusses the need for
FOM data, for Federation Agreements, for FPW data, and for Object Interaction
Protocols. Each of these data types is described and examples are given of
each.

The section on method requirements discusses the need for standard
interchange formats, the need for a test procedure interchange format, as well
as the need for using the MOM and the internet in facilitating testing.

All of these data and method issues need to be addressed in order for federation
testing to be as seamless, integrated, and automated as possible.

5.1 DATA REQUIREMENTS FOR FEDERATION TESTING

This section discusses several HLA data requirements for federation testing.
These are Federation Object Models (FOMs), Federation Agreements, the Fedex
Planning Workbook (FPW), and Object Interaction Protocols. This section will
provide detail on what the requirements are and why they are important to
Federation Testing.

5.1.1 Federation Object Models (FOMs)

The Federation Object Model is the main data input to Federation Testing.
Whether it is the use of SOMs in Application Testing, the use of a FOM made up
of multiple SOMs for integration testing, or the use of the final Federation Object
Mode for Scenario Testing, the FOM in the OMT format is a key enabler for
automated Federation Testing. Most of the development effort spent in
Federation Testing to date -- more specifically Application Testing -- has been in
using a FOM to design test procedures. The idea is that similar FOMs will be
able to use similar test procedures. Thus, in the future, it is possible that a
federation’s object model could be a benchmark for utilizing the federation’s set
of test procedures.

38

The following sections discuss the DMSO-sponsored Object Model Library
(OML) and Object Model Data Dictionary (OMDD), both initiatives which will help
the federation developer and tested.

5.1.1.1 Central FOM Library

The Model and Simulation Resource Repository (MSRR) referenced in the
FEDEP is a distributed network of resources, organized by resource categories
and maintained by the resource owners. The MSRR catalog contains
descriptions about various types of resources related to modeling and
simulations. These types of resources include models, simulations, tools/utilities,
documents, and data sources.

The MSRR is accessible through the Web at <http://www.msrr.dmso.mil>. It
includes the Object Model Library (OML), located at
<http://www.omlibrary.epgc4i.com>. The OML was opened to users in late
October 1997 and is now in release build 7.1 (12 November 1997), supporting
OMT DIF 1.1. Users can search and browse its SOMs and FOMs, and anyone
can check out OMs from the library using the download mechanisms available on
the Web site. Users also can upload an OM to the library, although they must
register with the OML first to ensure accountability. Uploading can be
accomplished using a Web browser or anonymous FTP to the OML Upload Area.
Once the OM (in OMT DIF 1.1 format) has been uploaded to the OML, it can only
be checked into the library by a registered user. The OML performs a simple
parsing check to ensure that the OM is in the proper DIF, but performs no other
validation of the model.

At the time of this writing, the OML included the following:

• CCTT SAF SOM

• ModSAF FCS SOM

• CTAPS SOM

• Eagle SOM

• NASM AP SOM

• Real-time Platform Reference FOM

• Engineering Federation FOM

• Joint Training Confederation FOM

• NASM/AP SOM

• Joint Training Federation Protofederation FOM

39

Additional FOMs expected to be in the OML include:

• F-14D FOM (NAWC-TSD)

• Countermine Component FOM (Army / NVESD)

The OMDD was opened to AMG members for alpha testing at AMG22 (10-11
December 1997). Capabilities of the OMDD include browse, search, manage
user selections of OMDD components persistently, and export selected OMDD
components in OMDD DIF format.

OMDD elements include:

• Classes

− names, associated terms, definitions, notes, and status

• Generic elements (attributes and parameters)

− names, associated terms, definitions, notes, and status

− data type, units of measure (multiple representations)

• Complex data types

− names, fields, associated generic elements, and status

• Enumerated data types

− names, enumerators, representations, notes, associated terms, and
status

• Interactions

− names, associated terms, notes, and status

Official release of the OMDD is expected in Spring 1998, contingent upon the
results of the OMDD experiment and early user feedback. The OMDD
experiment is a trial use of the OMDD and the updated FEDEP 1.1 to create a
federation. Three approaches are being considered: bottom-up, single
SOM/merge SOMs, and reference FOM. The bottom-up approach ensures
consistent data definition and offers multiple options in the structuring of the
federation, while relying heavily on the OMDD. The single SOM/merge SOM
approach is closest to existing federate implementation but can lead to
inconsistencies in naming. In the reference FOM approach, it is generally easier
to remove rather than add elements to the federation. In addition, it is likely that
different federation developers implementing the same types of objects would
develop compatible FOMs, so the reference FOM should be "comfortable" to
other developers in the same application area. The drawback to this approach is
that its generality may leave an unnaturally deep hierarchy that serves no
purpose in a particular federation. The initial conclusion of the OMDD

40

experiment was that the existing FEDEP and tools support all three approaches,
indicating flexibility and utility.

5.1.1.2 RPR FOM

The DIS family of standards (identified as of the IEEE 1278 series of standards)
defines a set of mechanisms that deliver a high degree of interoperability among
a specific class of simulations (IEEE, 1993). These simulations are
characterized as "real-time" in that they use a time standard directly traceable to
Coordinated Universal Time (UTC). They are characterized as "platform"
because they share a conceptual level of representation, called "entity," which is
aligned with the military concept of a weapon system’s platform. Many
simulations have been developed or modified to use DIS mechanisms, and they
are used in several M&S domains. They can be assembled into federations
without any modification, a capability that has been demonstrated for federations
in excess of 50 different models.

The problem facing DIS standard simulations is achieving the same level of
interoperability using the HLA. To achieve the needed level of interoperability, a
standard that addresses the content of the FOM for such a federation is needed.
Reference FOMs were developed to serve that part of the M&S community. A
reference FOM fully defines the representations and interactions of its
federations. As such, federates can be individually tested to show compatibility
with federations using the reference FOM. Then, they can be joined into a
specific federation to accomplish a specific simulation run without any
representation or interaction disconnects to cause software changes. The FOM
that accomplishes a complete mapping of DIS is called the Real-Time Platform
Reference FOM (RPR FOM), and it makes an ideal starting point for federations
whose requirements are nearly met by DIS. They can make a relatively small
change, then correspondingly small changes in federates from the RPR FOM
part of the MSRR. The RPR FOM may not be the only reference FOM, and other
M&S communities with common implementation techniques are encouraged to
build their own reference FOMs, as opposed to modifying this reference FOM.

5.1.1.3 Relevance to Federation Testing

The FOM is a critical component of Federation Testing, since it is the key
document through which a federation is described. Most of the development
effort spent in Federation Testing -- more specifically Application Testing -- has
been in using a FOM to design test procedures. The idea is that similar FOMs
will be able to use similar test procedures. Thus, in the future, it is possible that a
federation’s object model could be a benchmark for utilizing the federation’s set
of test procedures.

41

5.1.2 Object Interaction Protocols

An Object Interaction Protocol (OIP) is a set of ordered atomic events that define
a behavior. These behaviors can be defined in terms of initial conditions, a
transition, and a set of final conditions. For HLA, OIPs can be seen as a means
to describe a desired sequence of service invocations using a specified set of
objects and interactions.

5.1.2.1 Background

In the early development of the FEDEP, the idea of using OIPs arose as an
additional step in the definition of federation data. According to descriptions of
the FEDEP, originally documented on the DMSO Web site before the FEDEP
document was written (DMSO, 1996c), "...the Protocol Catalog is envisioned as
an on-line database that will contain standard definitions and formats of data
exchanged between distributed simulations. This database will contain definitions
and formats at all levels from atomic elements to Object Interaction Protocols
(OIP) to families of such protocols." (DMSO, 1996b) However, this concept
never came to fruition in the 1996 protofederation experiments or in subsequent
versions of DMSO documents because of a lack of commitment by the user
community to OIPs.

5.1.2.2 OIPs for Federation Testing

In the requirements phase of the STRICOM FTS IDT (see Section 3.3.1), OIPs
were proposed as a required input into the Federation Testing process. Although
it was too early in the maturation of HLA and the IDT for OIPs to become a
priority, the concept of using OIPs is still an important one because, for the
testing process to be successful, specifications of required behavior are still
needed.

It is important for the user community to establish a need for OIPs, to define if
and how they fit into the OMT, and to determine the feasibility of defining a library
of reusable OIPs. The extra work required to develop, implement, and test the
OIPs is important when there are interactions where order is important, and
especially when there are critical interactions that influence the outcome of the
exercise.

An important step in supporting the increased use of OIPs is identifying an
acceptable interchange format and adopting a set of conventions to be used with
the FOM. Adoption of a standard will offer several benefits:

• Clarity: A standard format for OIPs would make the specification of
interaction sequences in HLA documentation more clear.

42

• Interoperability and Reuse: OIPs expressed in the standard format could
be reused across similar FOMs.

• Testability: A standard format for OIPs would allow them to be tested via
automated tools, reducing the time and money required for federation
implementation.

• Code Generation: OIPs could possibly be used to automatically generate
required behavior sequencing in federates.

Once a file format has been established, federate developers can construct the
required behaviors in terms of OIPs. Test procedures then can be defined in
terms of identifiable data (FOMs) and behavior (OIPs).

5.1.2.3 Describing and Documenting OIPs

One way in which OIPs can be represented is through Message Sequence
Charts (MSC). An MSC is useful in showing an ordering of events and the state
of an object at a certain time. Also, MSCs can be defined on different levels. For
example, during Application and Integration Testing, the interest is in the HLA
service invocations. OIPs can be used to describe the service calls between
federates for any scenario. Figure 5.1 shows an OIP depicting a fire and
detonate series between two federates.

It should be noted that the dashed lines in the diagram signify that these events
can occur in any order. The diagram also has an associated standard textual
representation, which will prove useful when trying to automate the test
procedure development process. An abridged version of this representation is
shown in Section 9.2.

The OIP also can be used to describe higher level behavior that would be useful
in Functional and Scenario Testing. Figure 5.2 shows an MSC in which an
infantry company falls under attack by an opposing force (OPFOR) company.
Subsequently, the infantry sends a request for fire support to a tank company.

5.1.2.4 Relevance to Federation Testing

Although MSCs are a way to describe the behavior of real-time systems, one
MSC cannot describe the complete behavior of a system. It should be assumed
that a federation will have a collection of MSCs in order to describe a testable
behavior.

43

Federate 1 Federate 2RTI

Publish Object Class (MilitaryPlatformEntity,
Position, DamageState,...) Subscribe Object Class Attribute

(MilitaryPlatformEntity, Position,
DamageState,...)

Subscribe Object Class Attribute
(MilitaryPlatformEntity, Position,

DamageState,...) Publish Object Class (MilitaryPlatformEntity,
Position, DamageState,...)

Update Attribute Values (MilitaryPlatformEntity1,
Position, DamageState,...)

Update Attribute Values (MilitaryPlatformEntity2,
Position, DamageState,...)

Reflect Attribte Values (MilitaryPlatformEntity2,
Position, DamageState,...)

Reflect Attribute Values (MilitaryPlatformEntity1,
Position, DamageState,...)

Publish Interaction Class (WeaponFire)

Publish Interaction Class (MunitionDetonation)

Subscribe Interaction Class (Weaponfire)

Subscribe Interaction Class (MunitionDetonation)

Send Interaction (WeaponFire, EventID,
FiringLocation,...)

Receive Interaction (WeaponFire, EventID,
FiringLocation,...)

Send Interaction (MunitionDetonation, EventID,
FiringLocation,...)

Receive Interaction (MunitionDetonation,
EventID, FiringLocation,...)

Process
Detonation

Effects

Update Attribute Values (MilitaryPlatformEntity2,
Position, DamageState,...)

Reflect Attribute Values (MilitaryPlatformEntity2,
Position, DamageState,...)

Figure 5.1. OIP in MSC Format for HLA Interface Services

44

When federations become involved in some higher level tests, such as Scenario
Testing, the challenge will be determining what needs to be tested. An OIP
described through an MSC will give a simulation tester an unambiguous way to
test a simulation's behavior. The next step is to determine where in the
federation specifications the OIPs belong: as an addendum to the FOMs/SOMs,
as part of the FPW, or maybe as a stand-alone product for federates. More
information about the use of MSCs can be found on the Web at
<http://www.win.tue.nl/cs/fm/sjouke/msc.html> (Sjouke, 1997).

OIPs can be useful at several stages of Federation Testing, from Application
Testing through to Scenario Testing. An adopted convention to describe testable
behaviors is needed from the testing community. Only by using OIPs will
automating the latter stages of testing be successful. The more that behaviors
are defined, the easier the job of automated testing becomes, and therefore the
more complete and correct the conducted tests can be.

5.1.3 Federation Agreements

Federation agreements contain the high-level objectives of the federation and
answer questions such as why the federation exists and what its goals are.
Federation agreements can also describe federation requirements that do not fit
into the FOM or FPW. This section contains a description of information similar to
that contained in the FPW, but at a higher level.

45

Tank Co. Inf Co.OPFOR Co.

Not Engaged
with OPFOR

Fire

Fire

Under AttackAttacking

Engaged

Fire Support Request

Fire

Fire

Fire

Fire

Not Under Attack

Under AttackAttacking

Figure 5.2. OIP Example for Scenario-Level Information

46

One of the important issues to be addressed in future efforts is: how can these
agreements be captured in a computer-readable state? This is necessary if the
data is to be used in automated testing. The FPW, described in a later section,
sets a good precedent for this data capture. Future efforts should look at
capturing high-level requirements in a testable format. See Section 5.2.3 for a
discussion of a format for test procedures. Also see the Graffagnini SIW paper
for additional ideas on automating the testing of federation requirements.
(Graffagnini, 1997)

5.1.3.1 Overview

Scenario information defines what a particular federation execution instance will
do, including which objects and how many will participate and what configuration
parameters will be used.

At one level, federation capabilities define whether a federation can pause and
resume, save and restore, and transfer and accept attribute ownership. On
another level, it also includes assignments of some common simulation
functionality (e.g., data logging, performance monitoring, simulation monitoring)
to specific federates. For example, there may be two federates capable of
logging a certain data set, but only one is assigned this responsibility for a
particular execution. These kinds of capabilities are important to consider during
federation development to make sure that development efforts are not redundant
and that all desired functionality is included in the resulting federation. Note that
choices for inclusion of capabilities and assignments to specific federates must
be made with the big picture and the timing model for the federation in mind.

While the FOM defines a significant portion of a federation’s data requirements,
there are additional federation execution requirements that need to be captured.
These additional Federation Agreements typically fall into the following areas:

• execution environment

• runtime performance

• data representation

• timing issues

• data semantics

• scenario description

• federation capabilities

Some of these categories are discussed in the paper "High Level Architecture
(HLA) Performance Framework" (Dahmann et al., 1997), which was presented at

47

the Fall 1997 Simulation Interoperability Workshop (SIW). Execution environment
agreements answer questions such as:

• What hardware is needed?

• What type of network configuration is being used?

• How many computers are being used?

• What platform architectures are being used?

• Where are the computers located?

• Who will be operating them?

Runtime performance agreements formalize the runtime requirements for
federation execution. They answer questions such as:

• Is real-time execution required?

• If so, what latency can be tolerated?

• If not, what are the upper and lower bounds on execution time for the
federation?

• Also if not, what are the upper and lower bounds on execution time for
each federate?

Neither the Interface Specification (IFSpec) nor the Runtime Infrastructure (RTI)
API dictates the representation of data transported via the RTI. This decision is
left to each federation developer and should always be documented, both to
decrease the possibility of error and to allow testing of each federate to the data
representation specification. For the character string data type, the character set
should be specified (e.g., ASCII), the choice of null termination versus length
specification must be made, and any length restrictions should be indicated. For
all other data types, it is best to formally document the representation of each
data type on a byte-by-byte level. This step eliminates the possibility of
incompatibility due to platforms, compilers, or assumptions made by developers
(provided, of course, that each federate developer adheres to the documented
representation). Even if the choice is made to not support heterogeneous
federation execution, this choice and the rationale for it should be documented.

There are many time management parameters for a federate, including
regulation, constraint, lookahead, and the relationship between internal and
federation clocks. The choice of time management parameters for a single
federate will often affect the overall performance of the federation. As such, time
management needs to be addressed in federation design. Dependencies
between the federates should be documented. Some time management issues
are related to runtime performance requirements. For example, hardware-in-the-
loop federations must consider how to monitor the performance of the software
components and how to respond if performance is not satisfactory. Non-critical

48

software components can be terminated or ignored, but critical ones cannot.
Other timing issues are related to data semantics. Some of these issues, such
as update conditions, already are addressed in the FOM. While timing
requirements per data item are indeed useful, there also is a need for a big-
picture understanding of how time is understood, implemented, and managed for
a particular federation.

The FOM includes quite a bit of information regarding the data items to be
transported in a federation. However, the criticality of the description field for
each data item is probably not as well understood as it should be. The meaning
of each object, attribute, interaction, and parameter must be defined in enough
detail for every participant in the federation, and the level of detail and content
required for this description varies among federates and application domains.
For example, an analytic or engineering-level federate may require knowledge of
how certain data items are used in equations implemented in other
analytic/engineering federates, but a training federate has no need for this type of
information. Most federates also need to understand the big-picture concept of
how the data items in the object model are intended to work together. This
concept was described in Section 5.1.1.

5.1.3.2 Current State

The concept of Federation Agreements was originally discussed in the FEDEP
as the Federation Required Execution Details (FRED). The Federation
Execution (Fedex) Planning Workbook (FPW) is now being defined as the
repository for some of this type of information. The initial FPW definition
addresses the categories of execution environment and runtime performance in
detail and includes some scenario information in the object/interaction tables.
See Section 5.1.4 for more information about the FPW.

5.1.3.3 Relevance to Federation Testing

Federation Agreements are essential to Federation Testing. They serve as the
requirements to which the federation should be tested and they can allocate
certain requirements to specific federates in the federation. In some cases, the
latter function can decrease testing costs by allowing some tests to be performed
on a subset of the federation. Each federate can be tested individually to verify
that it upholds the Federation Agreements. In addition, when a federation fails
Federation Testing, documented agreements can help the correction process.

Documentation also makes it possible to perform more tests, which, in turn,
increases federation reliability. In addition, when the documentation is in a
shareable electronic format, it allows automation of the testing process, which, in
turn, increases efficiency and makes it possible to perform more tests in the
same, or shorter, period of time. An electronic format that demonstrates the

49

dependencies between agreements also will make it possible to update these
agreements automatically during federation development.

Another aspect of the testing process that should be emphasized is proper
management of the federation requirements. If federation participants understand
the requirements up front, fewer errors will be found during testing and "real"
exercises. Also, the organization (presentation) of these requirements will affect
their understandability, hence their utility. Although more agreements should be
documented (since they need to be tested), information overload can be as much
a problem as lack of information. One way to address this issue is for the
Federation Agreements format (or formats) to make critical and frequently used
information readily available, with more information accessible as desired.

There is an effort in progress to define a DIF for the FPW, and the Federation
Testing community certainly should be involved in this definition.

5.1.4 Fedex Planning Workbook (FPW)

As has been discussed in previous sections, the FPW is one of the data
requirements for the automations of Federation Testing. This section describes
the FPW in more detail.

The FEDEP version 1.1 replaces the earlier concept of the Federation Required
Details (FRED) with a Fedex (Federation Execution) Planning Workbook (FPW)
to document critical information needed to run a Fedex. The FPW format was
defined by a DMSO-sponsored RTI Performance Technical Exchange in May -
July 1997. The initial implementation of the FPW is in a Microsoft Excel
workbook, but DMSO is planning to fund the development of a new tool to create
and manage the FPW in the near future.

5.1.4.1 Description

The FPW is a set of five tables for specifying the performance characteristics a
user needs from an RTI implementation. It also facilitates communication about
a federation execution by reducing ambiguity in execution details that affect
performance.

The five tables (or sheets in the Excel workbook) are as follows:

1. Federation Execution Summary Table: defines at a high level the composition
of a federation execution; used to describe execution details of federation,
including:

• federation execution name

50

• member federate information

• name

• API used

• tick rate

• time regulating and constraining status

• host and LAN that federate is executing on

• version of RTI software

• number and name of concurrent federation executions

2. Host Table: provides details about hardware that affect performance of
federate and RTI; used to describe the following information for each host:

• hardware

• architecture

• number of CPUs

• operating system

• free memory available to RTI

• % of CPU available to RTI and federation

• % of CPU available to RTI

3. LAN Table: provides information about bandwidth availability and latencies
introduced by network infrastructure; used to describe the following:

• each LAN in the federation execution

• physical type

• throughput available to Fedex

• LAN to LAN connectivity

• type of device used to connect each LAN

• effective throughput available to Fedex for each device

• latency introduced by device

4. RTI Services Table: lists the services a federation execution uses. The
services used may affect the performance characteristics of a federation
execution. This table is filled out once for each federation execution,
specifying for each RTI service in the current IFSpec whether that service is
used at least once in the federation execution.

51

5. Object/Interaction Table: specifies runtime characteristics related to FOM
data that affect performance of federation execution; one table is filled out for
each federate, listing:

• objects

− number simulated by federate

− attribute sizes, nominal and maximum update rate, maximum
tolerable latency, attribute transport and ordering, update
groupings, ownership transfer groupings

• interactions

− interaction transport and ordering

− parameter sizes, nominal and maximum update rate, maximum
tolerable latency

5.1.4.2 Relevance to Federation Testing

Ultimately, when an FPW DIF is defined, the workbook can be used to drive
Integration and Application Testing. In the meantime, federation testers should
be prepared to work closely with the contractor developing the FPW tool, to
provide input on desired DIF characteristics and to maintain access to the latest
workbook developments.

Like Federation Agreements, the FPW will become a necessary component to
Federation Testing. During a test, many of the "other" aspects to test for, such
as latencies, RTI performance, federate performance, will be tested against
information contained within the FPW. Because of the relationship between
Federation Agreements and the FPW, a certain test procedure will derive from
either or both of these documents. An effort is needed to use the information
contained in the FPW and design a set of test procedures associated with it.

5.2 METHOD REQUREMENTS FOR FEDERATION TESTING

This section describes several key methods that should be used to facilitate the
automation of Federation Testing. The MOM is discussed as a way to manage
testing. Then, the importance of standardizing file formats is described. One file
format that the FTS team has introduced is one for test procedures. Additionally,
standardized file formats are discussed as a means for integrating separate
testing and HLA development tools. Finally, the use of the internet to facilitate
testing is discussed.

52

5.2.1 Use of the Management Object Model (MOM)

The Management Object Model is a special kind of FOM for the management
functions of the RTI. Previously the MOM was described in its own separate
document for the HLA Version 1.1 specifications (DMSO, 1996d), but starting
with the Version 1.3 specifications, the MOM is part of the Interface Specification
and eventually will be included in the IEEE standard for the HLA. The MOM is an
auxiliary component of the RTI and must be present in every federation. The
MOM classes, with their pre-defined attributes and parameters, are used by the
RTI in some of its internal functions as well as allowing a separate manager
federate to monitor the status of the federates or to control a federate's behavior
(Hyon & Seidel, 1997). The MOM uses the same mechanisms for the
management of a federation that the RTI uses for the exchange of information
among federates.

The MOM differs from the normal HLA data exchange mechanisms in several
ways:

• MOM classes, attributes and parameters are pre-defined for every
federation.

• The RTI is responsible for publishing, subscribing to, and generating many
of the objects and interactions. Normally, no federate involvement is
required.

• A manager federate need only subscribe to the Manager object class and
subscribe to and publish appropriate Manager interaction class to have full
access to understanding and control of the member federates of a
federation.

Basic MOM actions include the following:

• Generate interactions when something interesting happens

• Respond to control interactions that modify the state of the RTI

• Create management objects on behalf of the federate and federation

• Update attributes of management objects in a desired way

• Respond to Request Attribute Update for management object attributes

• Allow federation designers to extend the basic MOM

5.2.1.1 MOM and Federate Compliance Testing

MOM objects and interactions are used to log all the interaction services between
a federate and the RTI in testing the federate for HLA Compliance. This service
interaction log is used to verify that the federate actually performs the actions

53

required by the interface specification and the federate's conformance statement.
See (McLean & Loper, 1997).

Figure 5.3 shows the implementation of a Logger federate, which subscribes to
MOM interactions to record service interactions between a Federate Under Test
(FUT) and the RTI. Once these interactions have been logged, the log file is
examined to confirm HLA compliance for the FUT.

IF Test Sequence

Aux. Federates

Service Interaction
Report Log

Analysis

IF Test Report

FUT executes test sequence using scenario and
 auxiliary federates, as required

Logger joins federation and logs service
invocations using MOM

Logger

RTI

FUT

Figure 5.3. Use of the MOM for Federate Testing

5.2.1.2 MOM and Federation Testing

The utility of the MOM for federation testing increases with Version 1.3 of the
HLA as the MOM becomes part of the Interface Specification and formally a part
of the proposed IEEE standard for HLA. Federation test tools can now rely on a
standard implementation of the MOM with every RTI implementation, so they can
take advantage of MOM features to log RTI service interactions to verify test
objectives. Research is needed to reduce the impact of logging on
federation/RTI performance (bandwidth, latency), to increase understanding of
distributed logging and log synchronization, and to develop smart filters to
determine what to save in a log file for later processing in an after-action review
vs. what could be saved in a reduced file after processing during run time.

54

5.2.2 File Formats

The standardization of file formats will be an important enabler for the success of
automated federation testing. The more that data describing the federation can
be standardized into interoperable file formats, the more sharing of data and
therefore automation of testing can be facilitated. The following sections describe
some of the existing types of file formats that are found in distributed simulation
(specifically: ModSAF and JMASS file formats.) The goal of this section is to
provide a background for future efforts, so that the issues associated with many
different file formats will be dealt with proactively, especially with regard to
federation testing. One of the answers to the proliferation of multiple file formats
is the Data Interchange Format or (DIF). DIFs are described in Section 5.2.2.3.

5.2.2.1 ModSAF RDR

ModSAF has many data files that utilize the "libreader" format at runtime to
initialize this simulation. Libreader provides a facility for reading data files into C
structures. A typical .rdr data file consists of "an arbitrary number of data items."
[LM, 1997 #43]. Data items that libreader can support are specified in the
ModSAF libreader.info file. The idea behind libreader is to have a structured
syntax so a file can be read into one data structure. (See Section 9.1 for the
format of the data structure.)

Thus, libreader can read in an integer (stored as a four-byte signed integer), a
real number (stored as a four-byte float), symbols (stored in a symbol table), and
an array. The array is stored as a sequence of contiguous four-byte
READER_UNION's. The first element is always of type integer and indicates the
length of the array (including the 0th element). The remainder of the elements
follows at indexes [1] through [length-1]. Arrays are denoted by the use of
parenthesis, and lines in the .rdr file that begin with ";;" are ignored. (See Section
9.1 for an example of a .rdr file (routemap.rdr) taken from ModSAF.)

5.2.2.2 JMASS File Formats

The Joint Modeling and Simulation System (JMASS) is a modeling and
simulation (M&S) system developed by the Air Force for use by the Acquisition
M&S community. This system provides software infrastructure, a family of data
file formats, and a set of tools to standardize and simplify the development and
interoperability of models, as well as the execution and post processing of
simulations using these models. JMASS defines data file formats for several
dozen types of files used within and/or with the JMASS system. These data file
types and formats provide standard ways to exchange information between
different tools in the system. They also provide a common way to get data into
and out of JMASS models during a simulation execution.

55

Of particular interest are the family of file types and formats used to configure a
simulation execution (and its component models) and journalize its results. It
includes simulation, scenario, team player instance, configuration, override,
journal metadata, ASCII and binary simulation journal data, antenna pattern, and
route file types. This family of file types is dependent on the software
infrastructure provided in JMASS, which capitalizes on the knowledge that data-
driven models are more flexible and that analysis models and simulations are
typically data-driven. A standard mechanism for developing data-driven models
can reduce model development time (since a significant amount of code is
provided in the form of interfaces and libraries), reduce model maintenance
efforts (since data-driven models can be modified for many purposes by
providing new data sets), and reduce the learning curve for operating individual
models (since the same types of data files are used in all JMASS models
regardless of which government agency and contractor developed the model).

Execution of a JMASS simulation requires a command line argument specifying
the name of the simulation file. The simulation file specifies the scenario, team
player instance, ASCII metadata, and binary metadata files. The scenario and
team player instance files jointly define which models will participate in the
scenario and on which host computers they are to be executed. These files are
read (by the JMASS-provided main thread of execution), specified simulations
are started, and specified models are instantiated in the simulations. Also in the
scenario file, a configuration file is specified for each model instance. In turn, the
configuration files are read and initial values for data items for each model are
set, as specified in the configuration file, using the software interfaces and
infrastructure provided. The override files are used in a second round of
initialization (overriding initial data values from the configuration file with values
specified in the override file). This step allows use of a standard set of
configuration files that define the most commonly used values for most cases.
Only values that make a particular instantiation of the model unique must be
rewritten in the override file.

Another noteworthy aspect of the JMASS file format suite is the common
definition format and the common trends among the formats. (Similar issues
probably are being addressed in some of the data standardization research being
conducted for DMSO.) The formats are all defined using an extended BNF.
Almost all of the data files are stored in ASCII format. Most allow comments
beginning with two consecutive dots ".." and continuing to the end of the line
(similar to "--" in Ada and "//" in C++). Many use the concept of "keywords,"
which are specified by a leading dot "." character. Keywords divide the data files
into sections that logically follow the makeup of the simulation and/or models that
are being parameterized. An example of a configuration file, which provides
input data for a model and its components, is shown in Table 5.1.

56

..UNCLASSIFIED

..Example configuration file

.class AFF200Player, "Configuration data for the AFF 200"

.component_instance SignalProcessor

.component_instance PowerDivider

LossDb = 10.0

NoiseDensity = 1000.0 hz

NoiseControlSwitch = ON

.end

.component_instance DopplerFilter

CutoffFrequency = 20000.0

.end

.end

Table 5.1. Example JMASS Configuration File

5.2.2.3 Data Interchange Formats (DIFs)

Part of the simulation community’s commitment to move to the HLA is through its
use of data standardization, particularly Data Interchange Formats (DIFs).
Examples include the establishment of the Object Model Template (OMT) DIF,
which is motivated by the need "to provide an unambiguous way to exchange
OMTs used to describe FOMs and SOMs," which are key to the issue of reuse
(Scrudder & Sheehan, 1997).

The OMT DIF is defined in Bacus Naur Format (BNF) using ASCII text. The
following section is taken from documentation on the OMT DIF and is repeated in
Table 5.2 below for easy reference (DMSO, 1997d).

Certain symbols within the BNF have special meanings, these are called meta-symbols and they
are used to structure the BNF. Double Quotes, Angle Brackets, Braces, etc. are meta-symbols
within BNF, and their definition and use will be given below.

Words inside double quotes ("word") represent literal words themselves (these are called
terminals). In addition, terminals will also be highlighted using boldfaced text. An example of a
terminal is "HLA-OMT".

Words contained within angle brackets '<>' represent semantic categories (i.e. non-terminals)
which must be resolved by reading their definition elsewhere in the BNF. An example of a non-

57

terminal is <NameCharacter>.

The BNF used in this document adds a special case of non-terminal which is denoted by double
brackets '<<>>' rather than single angle brackets. This special case non-terminal is a reference to
the DIF Meta-Model, and further details about the non-terminal, including its definition can be
found in the data model glossary.

A production rule is a statement of the definition of a non-terminal. It is designated by the
production meta-symbol '::=' which assigns the definition to the right hand side (RHS) of the
production to the non-terminal on the left hand side(LHS) of the production symbol. The LHS
must always consist of a single non-terminal, while the RHS can consist of any combination of
terminals and non-terminals. An example of a production rule is:

<Integer> ::= 0..65536;

Which defines the non-terminal <Integer> to be a number between 0 and 65536.

Optional Items are enclosed by square bracket meta-symbols '[' and ']'. Square brackets indicate
the item exists either zero or one time, that is to say, it may or may not exist. An example of an
optional item is [<Sponsor>] which indicates the Sponsor item may or may not be present in the
DIF.

Repetition (zero or more) is performed by the Curly Brace meta-symbols '{' and '}'. Curly braces
indicate that there may be zero, one, or more sequential instances of the item. An example of
curly braces is {<Version>} which indicates there may be zero, one or more versions present in
the DIF. In basic BNF iteration is described using left or right recursion, extended BNF uses the
curly brace meta-symbol to make reading the BNF easier. An example of how the curly brace is
used to replace recursion is given below:

The Rule:

<ident> ::= <Letter> { <Letter> | <Digit> }

is the same as the recursive rule:

<ident> ::= <Letter> | <ident> [<Letter> | <Digit>]

The double period .. used within a Literal is a shortcut notation for denoting the set of ASCII
characters between the characters to either side of them. An example of this is "a..z" which
denotes the set of lowercase letters between 'a' and 'z' inclusive.

All BNF Statements are terminated by a semicolon ;

In order to represent unprintable or reserved characters within the BNF and the DIF code itself,
we use the C language convention of using the backslash as the escape character within literals
with the following set of legal escaped literals:

58

'\n' newline

'\r' return

'\'' Single Quote

'\"' Double Quote

'\\' Backslash

'\t' Tab

'\b' Backspace

'\f' FormFeed

'\xxx' Any character where xxx is its Octal representation.

Table 5.2. OMT DIF Description

Tools have been developed to test for data consistency using the DIF
specifications, which represent one of the foremost tests during Federate
Testing. It also should be noted that the Federation Execution Details (.fed) file
format has also been standardized using this DIF notation.

5.2.2.4 Self-Describing Data Interchange Formats (DIFs)

One problem with DIFs, however, is that the standards are still evolving.
Programmers must stay abreast of all modifications, then change their
applications accordingly. Currently, there is an effort underway at GTRI to tackle
this issue by developing self-describing databases and database generators. By
combining these new systems with formal grammar definitions of DIFs and self-
describing data messages that contain identifications of the DIFs used in the
messages, researchers believe they can help preserve interface investments
during the gradual and moderate evolution of DIF standards.

A self-describing database is a hierarchical database in which data at some level
is either an extension of the data above or an intension to the data below. The
highest level of the database consists of meta-data that describes the data model
in terms of itself, hence the term "self-describing." The top layer, referred to as
meta-schema, contains a dynamic data dictionary used to support access to the
meta-data needed for interchanging automatically interpretable data between

59

databases. In other words, this data dictionary describes the semantic content of
the grammar to be used to store the data.

A database generator system supports a self-describing database of sets of
objects defined by grammars. It accepts input in the form of context-free
grammar that defines a set of objects for which database support is desired.
From the grammar, it generates a database schema definition, a parser to parse
and populate the database with objects defined by the grammar, and a set of
equations for query computation on the objects stored in the database. A
database generator system supports multiple levels of data decomposition to
facilitate efficient analysis of objects stored in the database. A database
generator also can automatically generate syntax-directed editors from grammar
specifications, thereby supporting descriptions of objects that are acceptable in
the new grammar. In addition, it can support syntax-directed query formulation
on and across objects stored in the generated database. A database generator
can assist in composing/decomposing objects according to sub-grammars, which
could help define mappings between objects with different decomposition levels
in a database. Ultimately, a database generator could even use its self-
describing meta-schema to provide syntax-directed assistance in the initial
definition of a grammar.

5.2.3 Test Procedures

One challenge to simulation developers will be defining test procedures for a
federation. As HLA-compliant federations are put together, questions of what
exactly needs to be tested will arise. The solution to this problem will be the
development of a test procedures library that other federates can access to
develop their own test procedures. In addition, for this process to be successful,
a standard format needs to be established for test procedures. One possibility is
to apply a DIF.

5.2.3.1 Test Procedures Format

During the development of the Federation Testing System (FTS), the Integrated
Development Team (IDT) developed an internal test procedure format. The team
focused on adopting a format that would meet the needs of the user community
and would be easy to input into the FTS. This format uses a hypertext format
and is shown in Table 5.3.

60

<TP> [TP Group Reference] [TP Group Title]: [TP ID] [TP Reference] [TP
Title]

<INIT_COND>

[Initial Conditions Text]

</INIT_COND>

<REQS>

[Requirements Text]

</REQS>

<CAPS>

[Capabilities Text]

</CAPS>

<SCENARIO>

[Scenario Text]

</SCENARIO>

<CRITERIA>

PASS: [Pass Criteria Text]

FAIL: [Fail Criteria Text]

</CRITERIA>

<PAGE>

<TITLE>

[TP Title] - Page [Instruction Number]

</TITLE>

<FUT_INSTR>

[FUT Instruction Text]

Press INSTR COMPLETE.

- OR –

Press PASS if [Passing Criteria].

Press FAIL if [Failing Criteria].

</FUT_INSTR>

<TSTFED_CUE>

[Test Federate Script Filename]

</TSTFED_CUE>

<ANALYSIS_CUE>

[Analysis Federate Script Filename]

</ANALYSIS_CUE>

61

<SUBJECTIVE>

[Subjective Subtest Title]

</SUBJECTIVE>

</PAGE>

</TP>

<END>

Table 5.3. Test Procedure Format Sample

5.2.3.2 Test Procedures Description

As noted above, one of the challenges in testing a federation is determining what
needs to be tested. Initially, developing test procedures may prove to be a slow
and arduous task. However, if a library of test procedures from existing or
previous federations is developed, new federations can borrow them to help
develop their own test procedures. For this idea to become a reality, a
standardized format for exchanging test procedures needs to be accepted. For
the FTS, a Test Procedure Set was developed to document and organize the test
procedures. The format described in this document provides the necessary
elements to read in and execute a Test Procedure Set with the Test Session
Manager. The structure of this format supports the orchestration and
synchronization of testing events between the FUT, the test federate, and the
analysis federate (described in Section 6.3) during test procedures. Test
procedures are conducted through the execution of FUT instructions, and testing
events are coordinated by their relationship to the instructions.

5.2.3.3 Test Procedures Example

A detailed example of the test procedure format can be found in Section 9.3. This
procedure currently is being used in the FTS as an example of a test procedure
for the RPR FOM. Standardizing the test procedures format will allow other
federations with similar FOMs to reuse existing test procedures.

5.2.4 Integration of HLA Tools Developed By Different Organizations

Clearly there is a need for standard data interchange formats to support
federation testing so that automated tools can be developed by different
organizations which are interoperable but tailored specifically to address the
needs of different federations or different stages in the development of
federations.

62

Figure 5.4 illustrates the relationships between the Object Model Development
Tools, data interchange formats, and federate/federation testing. The OMDT can
import data elements from the Object Model Data Dictionary (OMDD) in OMDD
DIF files, and then generate OMT DIF files for federate testing and FED DIF files
to support federation testing. The RTI Service Table from the FPW can be used
in both federate and federation testing, while the Object/Interactions Table can
provide scenario data for federation testing. MOM data available from the RTI
supports both federate and federation testing.

OMDT

OMDD

Federate
Testing

Federation
Planning

Workbook

Federation
Testing

RTI

RTI Service Table

Fed DIF

OI Table

MOM
Data

MOM

OMT DIF

FPW DIF

OMDD DIF

RTI Service Table

Figure 5.4. HLA Object Model Integrated Tool Suite and DIFs
Support the Test Process.

5.2.4.1 Object Model Development Tool (OMDT)

The OMDT provides a mechanism for developing SOMs and FOMs, either from
scratch or by compiling data elements from the OMDD. The OMDT was
developed in direct response to comments from the first HLA protofederations
that object model development using spreadsheets was cumbersome and
tedious. By storing all object model data in one database, the OMDT guarantees
consistency among the various OMT tables. In addition, the OMDT includes a
Consistency Checker that can be used to verify that the SOM or FOM conforms
to the OMT Specification. The Consistency Checker provides the first level of
federation testing by ensuring that the FOM conforms to the OMT Specification.

63

5.2.4.2 FPW Development Tool

When an FPW DIF is developed, it will provide a parseable mechanism for
automating standardized tests of federation agreements and object interaction
protocols. The RTI Service Table will specify which interface services the
federation can respond to and invoke, and the Object/Interactions Table can
indicate which federates supply and consume what data. Federation test
developers need to coordinate with the FPW tool developers to provide testing
requirements and suggestions, especially in the area of tailoring the OI Table to
yield OIPs in some automated fashion. The FPW DIF is important because it
provides the parseability necessary for automation.

5.2.5 Use of the Internet to Facilitate Test Management

With the immense popularity of the Internet, organizations have started to accept
the World Wide Web as a required tool to support widely dispersed working
environments. As such, the Web should be used actively and with vision to
support the requirements of the Federation Testing Process.

The HLA Federate Conformance Test System, <http://hlatest.msosa.dmso.mil>,
provides a good example of the ways in which the internet can offer many
advantages to both test users and test system administrators. Perhaps the key
advantage is the availability of a common and easily accessible means to
communicate. For example, many test management functions such as
submitting test requests and reporting test results lend themselves to a World
Wide Web-based system. Browsers, common gateway interface (cgi) scripts,
and underlying data structures can be assembled to create a complete system
that controls test operations from start to finish. Because of the common
availability of these components and their universal usage, such systems allow
users and system administrators to communicate and conduct test operations
without the need for special software and hardware.

5.2.5.1 Federate Conformance Testing Example

The HLA Federate Conformance Test System was developed for DMSO for
providing an easily accessible system to conduct and administer federate HLA
Conformance testing. As shown in Figure 5.5, the Federate Conformance Test
System combines HTML, cgi scripts, automatically generated e-mail, databases,
and federate test tools into one comprehensive system. This system is illustrated
in three layers where, from top to bottom, the test user (i.e., customer), test
system infrastructure, and test system administrator (i.e., operator), respectively,
work within the same framework to conduct all test operations.

To demonstrate the comprehensive nature of such a system, the following
sequence of events represents key exchanges central to test operations:

64

Initiation: The customer accesses the Web-based test system to request a
test for a given federate. An application form is submitted, an e-mail
message is generated automatically to notify the operator of the application,
and the application data is written to the request database.

Approval/Acceptance: After receiving the e-mail notification, the operator
reviews the customer's application using a browser and ensures that all data
are complete and accurate. If the information submitted is correct, the
operator approves the application and automatically generates an e-mail that
provides further instructions for conducting the test (e.g., prompts for
providing a Conformance Statement, OMT file, and other test files.)

Customer Provides Test Files: Using a browser capable of multi-part form
uploads, the customer uploads the requested files. The file upload
automatically generates an e-mail notifying the operator that the files have
been received, along with an email to the customer confirming the file upload
success.

SOM Conformance Tests and Results: Once all of the necessary files for
testing have been received, the operator conducts the SOM conformance test
and the Conformance Cross Check test. When these tests are successfully
passed, the operator generates a test sequence for the Interface Test. The
operator sends an email to notify the customer of the successful test results
and to send the customer the test sequence for the Interface Test and
instructions for providing other information needed for the IF Test.

Customer Provides Test Files: Again the customer uploads the requested
files and/or provides interface test information through web based forms. A
date and time are confirmed for the IF test by both the customer and the test
operator using email.

Interface Test Operations and Results: The IF Test is conducted over the
Internet. The customer starts the RTI, creates a test federation, and the FUT
joins the federation. The test operator then joins the federation with a special
logger federate. The FUT then exercises the test sequence while the logger
federate uses the MOM to log all RTI service calls and responses from the
federation. After the test is over, the test operator examines the test log to
verify that the FUT successfully demonstrated the test sequence. The
customer is notified of the test results by email.

Through this back and forth exchange between customer and test operator, all
tests are conducted, administered, and HLA compliance is established through
the use of this single Web-based system.

65

REQUEST
DATABASE

TEST
 DATA

*.CS

*.OMT

*.SCN

.history

CGI SCRIPTS

CUSTOMER INTERFACE

OPERATOR INTERFACE

SERVER SIDE

CONFORMANCE
TEST SYSTEM

OPERATOR CLIENT

CUSTOMER CLIENT

TEST
OPERATIONS

TEST
DATA

TEST
RESULTS

OPERATIONS
INTERFACE

LOGGER
INTERFACE

IRPP
INTERFACE

E-MAIL

E-MAIL

CGI SCRIPTS

HTML HTML HTML

HTML HTML HTML

Figure 5.5. Overview of the Web-Based Federate Conformance Test System

5.2.5.2 Implications for Federation Testing and Future Directions

The use of the internet will be most useful for Federation Testing, when the
federation developers, integrators, or users are located at several distributed
locations. In these cases, internet communication, facilitation, and also
distributed Federation Testing will prove to be necessary. This is further
evidenced by recent uses of the Internet to store, manage, and maintain central
repositories of information for access by the HLA community. An Internet and
Web based federation test system will provide more flexibility than a locally
based system.

One example of a good approach to distributed test management is highlighted
in the Morley and McLean paper from the 13th DIS Workshop, entitled "Issue
Management Database System." (Morley & McLean, 1995) This paper describes
the successful use of web-based technologies for distributed Integration,
Functional, and Scenario testing and should be a required capability for all future
large-scale testing environments.

66

This Page Intentionally Left Blank

67

6. TESTING TOOLS

Many testing tools have been built to support distributed simulation testing since
the time when two simulators were first linked together up until the current HLA
testing tools. The overarching reason for tool development is because distributed
simulation testing is hard.

It is well known that desktop simulation verification is difficult. (Law & Kelton,
1991) The troubles with software quality resulting from insufficient software
testing are also well documented. (Schach, 1990) Add to the mix the complexity
resulting from developing a distributed system (Schach, 1990) and the concept of
distributed simulation testing could be given up as being impossible.
Unfortunately, this is the approach taken by many distributed simulation
developers: "It's too hard, this distributed simulation system can't be tested so
lets just build it, do a face validation, and fix the errors we find along the way."

In spite of this view, successful implementers of distributed simulation for both
Test and Evaluation (McKee, 1998) and Analysis (Roberts, 1995) have shown
that systematic and practical testing and VV&A can provide a robust functional
system that can faithfully represent the requirements of the sponsor.

One of the keys to making distributed simulation testing manageable is through
the development of tools. If a test, test process, or test procedure can be
characterized well enough so that it can be automatically done, then doing this
will allow the testers to spend more time on the problems that have to be done by
humans. (Clay et al., 1995) The ultimate goal is to increase the coverage of the
testing so that a greater percentage of the required federation behaviors are
verified. Automation is also key for regression testing. When software changes
are implemented, if automated tests exist, then these can be run and
comparisons made. This allows the federation developers and testers to do more
effective change control.

The following sections discuss some of the important simulation testing tools that
have been developed. The first section gives a brief history of some of the
testing tools that were developed to support DIS and ALSP. The following
sections discuss a brief history of distributed simulation testing, then details are
provided on the HLA Conformance Testing tools and the Federation Testing
System (FTS).

6.1 TESTING TOOLS FOR DISTRIBUTED SIMULATION

Many of the testing tools that have been developed for DIS can trace their
heritage to the Institute for Simulation and Training (IST) Intelligent Simulated
Forces CGF Testbed, which became the first defacto DIS Test Tool. This test

68

tool, which was converted from SIMNET to DIS, was used to test 41 systems for
the first DIS interoperability demonstration at the 14th Interservice/Industry
Training Systems and Education Conference (I/ITSEC). (Loper, 1993; Loper,
Goldiez, & Smith, 1993a; Loper et al., 1993b; Shen, Loper, & Ng, 1992; Vanzant-
Hodge, 1994) The CGF Testbed eventually became part of the IST DIS Testbed
which also contained Data Logger/Playback and Scanner Analyzing
Tools.(Vanzant-Hodge, Cheung, & Smith, 1994)

The next major testing tool effort was developed to support the Advanced
Research Projects Agency (ARPA) War Breaker Program. This program was the
first to use DIS 1.0 in a large distributed exercise (Zealous Pursuit) and the first
to use DIS 2.0.3 in a large distributed exercise (Zen Regard.) Initially, the
program made use of legacy SIMNET testing tools which had been converted to
support the 2.0.3 draft version of the DIS standard. Tools to support the following
capabilities were used:

• PDU/Protocol Verification

• Tactical Display

• 3D Stealth

• Network Traffic/Bandwidth Monitor

• PDU Generation

• Data Logger

As a result of the lessons learned in using these tools to support exercise
integration, the DISIntegrator Integration Test tool was designed and developed.
(Hansen, 1994) DISIntegrator was designed to be a real-time test tool that could
analyze DIS PDUs while integration testing was being conducted, in order to
facilitate faster detection, analysis, and fixing of DIS implementation errors. (Clay
et al., 1995) DISIntegrator was the first test suite to do real-time dynamic testing
of distributed simulation.

The DIS Test Suite (DTS) was the next major step in test tool evolvement. The
design of DTS built on the lessons learned from the IST Testbed, DISIntegrator,
and testing to support the STOW-E exercise. (Long, McAuliffe, & Liu, 1996;
McAuliffe, Long, Liu, Hays, & Nocera, 1995; McAuliffe, Long, Liu, Hays, &
Nocera, 1996) The Federation Test System (FTS), discussed in Section 6.3 is
based on the software framework designed for DTS.

The other major distributed simulation paradigm, the Aggregate Level Simulation
Protocol (ALSP) also has a heritage of test tool development. See the Page and
Babineau paper presented at the Fall 97 SIW, "The ALSP Joint Training
Confederation: A Case Study of Federation Testing." (Page & Babineau, 1997)

69

Also see the ALSP web site: <http://alsp.ie.org/alsp/alsp.html> for more
information.

6.2 HLA COMPLIANCE TEST TOOLS

Compliance Testing tools were developed to assist in the four-step HLA
Compliance Testing process explained in Section 4.1.2. There are three major
components to the test tools: the Pre-Processor, Logger, and Post-Processor. 10

The federate under test (FUT) must submit a Simulation Object Model (SOM), a
Conformance Statement (CS), and a .fed file, and it may submit a Scenario file.
Once these files are received, they are used by the tools described below as
follows:

6.2.1 Pre-Processor

6.2.1.1 Conformance Cross-Checker

The Conformance Cross-Check process is illustrated in Figure 6.1 below. For the
Cross-Check test, the services asserted in the FUT’s CS are matched to services
implied by the FUT’s SOM, to determine if the two specifications are consistent.

10 This section was adapted directly from the series of Compliance Testing papers published by
GTRI at SIW and DIS workshops and the "Federate Test Tools Operator Guide, Version 1.1,"
prepared for DMSO (DMSO, 1997a).

70

Resubmit Conformance Notebook;
Repeat SOM Conformance Test

Not Pass
Conformance Cross-Check

Test Deficiencies

Conformance Cross-Check
Test Results

Federate Site

Conformance
Cross-Check Test

Test Site

Successful
SOM Conformance

Test Report

Pass

Figure 6.1. Conformance Cross-Check

6.2.1.2 Nominal Sequence Generator

The Nominal Test data ensures that the FUT can invoke and respond to all
services for which it is capable, per its CS. The CS is compared to the Master
Sequence to create the Nominal Sequence of services that the FUT can support.
The Master Sequence is a dependency tree of all services defined in the
Interface Specifications (IFSpec) (DMSO, 1997c). Where true dependencies
exist (e.g., Publish before Update), the Master Sequence shows a mandatory
ordering. If no dependency exists (e.g., Update and Pause), the Master
Sequence ordering is arbitrary.

6.2.1.3 RepSOM Generator

A Representative SOM (RepSOM) is generated by using the SOM and the
Scenario file (if provided). The RepSOM Test data ensures that the FUT is
capable of invoking and responding to services using the range of data contained
in its SOM. For example, a FUT may be capable of representing multiple objects,
attributes, and interactions. Instead of attempting an exhaustive test using all
combinations of the objects, attributes, and interactions, a subset of the SOM is
chosen by the Certification Agent (CA) to represent the range of SOM data. This
"logical subset" forms the basis for RepSOM testing.

A logical subset is derived from the SOM by a set of rules. These rules select
one to three instances from each object, attribute, and interaction table. The

71

RepSOM Test data requires that the federate invoke the IF services specified in
the Conformance Cross-Check Test associated with each Object Model
Template (OMT) table for each instance requested.

6.2.1.4 Test Sequence Generator

The Test Sequence is generated by taking the Nominal Sequence and
expanding it by the RepSOM. The FUT should be prepared to execute the Test
Sequence multiple times within the test federation, as specified by the CA. The
CA will log service interactions via the Management Object Model (MOM)
interaction reports for later analysis and report generation (DMSO, 1996d).

6.2.2 Logger

Once the Pre-Processor files have been generated and checked, the CA will use
the logger federate, which subscribes to MOM interactions to record service
interactions between the FUT and the Runtime Infrastructure (RTI). The FUT
and logger are connected via the RTI.

6.2.3 Post-Processor

The final step of IF Testing involves the post processing of the test logs. The
Post-Processing tool is designed to reduce and analyze the service interaction
log to determine whether each asserted service was demonstrated and whether
the classes, interactions, and attributes specified in the RepSOM were
demonstrated.

6.3 FEDERATION TEST SYSTEM (FTS)11

The FTS Integrated Development Team (FTS IDT) is developing the Federation
Testing System (FTS) under the sponsorship of STRICOM. The purpose of the
FTS is to provide a software testing tool to perform HLA Federation Testing.
Throughout the FTS development process, several FTS IDT meetings were held
to define and document the user and technical requirements for the FTS, as well
as for Federation Testing in general. (See Section 3 for a discussion of the steps
taken by the FTS IDT to develop requirements for the FTS.) These early efforts
produced two documents: the FTS Application Testing Process Requirements
Definition (Acusoft, 1997a) and the FTS Application Testing Process
System/Subsystem Design Description. (Acusoft, 1997b) These documents were

11 Most of this section is adapted directly from FTS IDT, Acusoft, GTRI, TASC, and STRICOM
documents describing the FTS, most notably the papers published at the 1997 Fall and Spring
Simulation Interoperability Workshops.

72

the basis for the development of the FTS to support Application and Integration
Testing, which is illustrated in Figure 6.2.

 This Application Testing Process is broken into three phases, the Pre-Test
phase, the Test Conduct phase and the Post Test Analysis phase. The concept
of this testing process is to facilitate the creation, execution and analysis of Test
Procedures for Application Testing. During the Pre-Test Phase the FTS provides
tools to create Test Procedures and their supporting data elements and scripts.
The output of the Pre-Test tools will be used later in the Test Conduct phase to
execute the Test Procedures. FTS tools for the Test Conduct phase consist of
the Test Federate, Analysis Tool and Test Session Manager. During the Test
Conduct phase, the FUT will communicate with the FTS via the RTI.

FTS Application Testing Process

FED

OMDT

FOM

-----------------SOM

MSRR
SOMs/FOMs

Test Procedures

TP
Generator

CAPS
Generator

Test Fed.
Scripting Tool

Analysis Fed.
Scripting Tool

Federate
Profile

Test Proc
Set

Test Fed.
Script

Analysis
Script

Exercise
Manager

RTI
Monitor

Logger

Federate
Under Test

2D Viewer3D Viewer

Test Session
Manager

Test
Federate

Analysis
Federate

Test Report
Viewer

Encrypted
Test Report

Compiled
Test Report

RTI

Federation Test System

Post-Test Analysis

Test Conduct

Pre-Test

Figure 6.2. FTS Support of Application Testing

The FTS software tools are designed to be flexible and maximize reuse.
Common DIFs, such as the Object Model Template DIF (OMT-DIF), are used
whenever possible. The goal of the FTS design is to support all HLA Federations

73

and the wide range of FOM representations they present. The following sections
describe the FTS software tools.

6.3.1 Test Federate

 The Test Federate is used to stimulate the FTS as required by the Test
Procedures to perform Federation Scenario interactions. To maximize flexibility
and reuse, the Test Federate is implemented as a script reading tool. During a
Test Procedure, the Test Federate will execute scripts created by the Test
Federate Scripting Tool when cued by the Test Session Manager. Test Federate
Scripts contain RTI service call functions, such as “Publish Attribute” and “Update
Attribute Value.” These scripted functions are interpreted by the Test Federate
and communicated to the RTI in accordance with the HLA Interface Specification.

6.3.2 Analysis Federate

 The Analysis Federate is used to capture, analyze and report test data. The
Analysis Federate is similar to the Test Federate in that it is implemented as a
script reading tool. During a Test Procedure, the Analysis Federate will execute
scripts created by the Analysis Federate Scripting Tool when cued by the Test
Session Manager. Analysis results are reported to the tester in real-time and
then written to an Encrypted Test Report file. This Encrypted Test Report file can
be viewed during the Post Test Analysis phase with the Test Report Viewer tool.

6.3.3 Test Session Manager

 The Test Session Manager is used to orchestrate the execution of Test
Procedures created by the Test Procedure Generator. During a Test Session the
Test Session Manager will:

• Provide a selection of Test Procedures to be performed.

• Provide instructions for the FUT operator, walking them through the Test
Procedure scenario.

• Cue the Test Federate to execute Test Federate Scripts.

• Cue the Analysis Federate to execute Analysis Scripts.

 The Test Session Manager user interface is shown in Figure 6.3.

74

Figure 6.3. Test Session Manager

 During the Pre Test phase, the intrinsic capabilities of the Federate Under Test
(FUT) are captured in a Federate Profile by the CAPS Generator tool. These
capabilities are used by the Test Session Manager to determine which tests need
to be performed and what capabilities are to be tested.

6.3.4 Exercise Support Tools

 Outside of the FTS, different exercise support tools can be useful during
Application Testing to provide various perspectives of the simulation. Examples

75

of exercise support tools that should be widely available within the SISO and
DoD communities would be, Data Loggers, Exercise Managers and RTI
Monitors. Other exercise support tools, such as 2D Plan View Display Viewers
and 3D Stealth Viewers, are often designed to be FOM dependent and may be
limited to use within a single Federation.

6.3.5 Next Steps for the FTS

This section described the capabilities of the Federation Test System (FTS).
Further development of the FTS will provide process and software tool solutions
for other phases of the Federation Testing Process. See Section 7.3 for
recommendations for FTS next steps.

76

This Page Intentionally Left Blank

77

7. RECOMMENDATIONS

This section provides recommendations based upon the research and
development described in this report. The recommendations are divided into
policy, technical, and FTS recommendation sections.

7.1 POLICY RECOMMENDATIONS

This section provides recommendations to STRICOM on the approach that
should be taken to address the issues that have been highlighted in this
document.

7.1.1 Support Development of a DIS Federation

STRICOM should take an active lead in the formation of a DIS Federation to
provide the framework for interoperability for the many existing legacy DIS
simulations.

In their Spring 1997 Simulation Interoperability Workshop (SIW) paper,
"Implementation of the High Level Architecture Into DIS-Based Legacy
Simulations," Braudaway and Harkrider predicted the emergence of a set of
Distributed Interactive Simulation Federation Object Model (DIS FOM) standards
that will "reduce the re-engineering effort and maximize the reuse of modified DIS
systems in many platform oriented federations." (Braudaway & Harkrider, 1997)
Alternately, perhaps a more direct approach to supporting legacy DIS simulations
is the development of one community-supported, government-sponsored DIS
FOM that will meet the needs of the "legacy" DIS community. This approach
would allow existing DIS implementations to maximize reuse of their already-
committed development efforts. The creation of a DIS FOM would offer a
baseline from which DIS-based federations could add or change standard
functionality as needed for their federation. As described in Section 5.1.1.2,
efforts are already underway to develop a DIS-based Reference FOM, called the
Real-Time Platform Reference FOM (RPR FOM).

The most urgent need for the legacy DIS community is the official formation of a
DIS federation to foster interoperability between platform-level simulations,
similar to the goals of DIS. This effort should be funded by users who have the
most to gain from a DIS federation, such as current simulation users who have
implemented DIS successfully and can benefit from the new capabilities offered
by HLA (e.g., smaller messages, update upon demand, lower bandwidth
common infrastructure, and federation planning tools). STRICOM, in its role as
service sponsor for DIS, should support the DIS FOM effort.

78

7.1.2 Continue Support of the SIW Testing Forum

STRICOM should continue support of the SISO SIW Testing Forum, because it is
the only organization that is addressing the technical issues involved in
distributed simulation testing in an open forum.

As has been discussed, distributed simulation testing is difficult, but manageable.
In order for heterogeneous distributed training systems to become increasingly
accessible to the warfighter, the process needed to develop these systems must
be well understood by the military user and their support contractors. They also
need to understand the tools that are available to support the construction and
maintenance of distributed simulation systems. The open forum represented by
the SIW Testing Forum is necessary to allow discussion of these issues and
provide a way for research results to be published in conference proceedings.

7.2 TECHNICAL RECOMMENDATIONS

This section provides technical recommendations based on the research and
development discussed in this report. The target of these recommendations is
federation and federate developers and distributed simulation testers.

7.2.1 Encourage Expansion of the FEDEP to Describe Federation Testing
in More Detail

The SIW Testing Forum should push for and support the expansion of the
FEDEP to include more details for federation testing.

The FEDEP description of Federation Testing does not have enough detail to
provide guidance to federation developers. The current description is even
misleading; by skipping steps, it makes HLA Federation Testing seem easier
than it might actually be. For example, the FEDEP has no explicit descriptions of
the Application Testing Phase described in this document. This implies that once
federates have completed HLA Compliance Testing, they are immediately ready
for Integration Testing. An explicit Application Test Phase is required before
Integration to verify that individual federates are using the FOM objects,
interactions, and timing protocols correctly in order to interoperate with the
federation.

7.2.2 Promote the Development and Use of Interchange Formats for HLA
Data

STRICOM, DMSO, SISO, Federation Sponsors, and Federate Developers
should promote the development and use of interchange formats for HLA
supporting and management data.

79

The following paragraphs discuss several data requirements in this context.

7.2.2.1 FPW

As discussed in Section 5.1.4, FPW data will support the specification of a
federation execution. This data can be used in Application Testing to verify that
federates are performing the services and using the objects that they have been
listed as supporting as well as meeting the specified timing requirements. The
FPW will be useful in Integration Testing as a catalog of the federates and their
capabilities. The FPW will also be useful in Scenario Testing where automated
testing tools can be used to verify that a federate is fulfilling the role defined for
the federation (number of object instantiations of each object type).

7.2.2.2 MSCs for OIPs

The use of MSCs as a format for OIPs was discussed in Section 5.1.2. OIPs are
required to provide a needed level of specification for the description of
distributed simulation behavior. In order for OIPs to be manageable and detaileds
enough to be used in automated testing, they must be specified using a defined
format. The MSC is proposed as one way of describing OIPs. MSCs are already
being used in the development of Compliance Testing tools.

7.2.2.3 Test Procedures

Section 5.2.3 described the requirement for the use of test procedures and the
development of a test procedure format to support federation testing. The idea is
that test procedures can be defined in a way so that they can be used in the
automation of Federation Testing. This has been demonstrated with both the
DTS (for DIS compliance) and with the FTS (for HLA Application Testing.) If a
format for test procedures is adopted by the community, then test procedures
developed to support a federation can be stored along with the FOM in the
MSRR. This approach to reusing test procedures will go a long way towards
reducing the costs and effort required to perform detailed federation testing.

7.2.2.4 Federation Agreements

Federation Agreements were described in Section 5.1.3. This is the most
general of the data requirements for HLA Testing, and therefore needs more
definition before they can be used effectively for automated testing. Some
experimentation is needed using several federations to determine what type of
federation agreements are needed. These agreements should be stored in either
a generic database system or one designed specifically to store requirements.
Once these experiments have been conducted, then recommendations can be
made on a specific approach.

80

7.2.3 Use the Internet to Facilitate Test Management

STRICOM and test tool developers should use internet technology as an enabler
to facilitate the success of Federation Test and Management approaches.

As described in Section 5.2.5, the internet can be a useful tool in supporting
Federation Testing. As networking technology continues to improve, the
developers of all computer applications can assume connectivity to the internet.
With this view of the future of ubiquitous networked computing, forward thinking
organizations can start now to develop distributed software applications.

Federation Testing tools should be developed to support not only distributed
simulations, but also distributed management, software development, testing,
integration, and simulation execution.

7.2.4 Encourage Applied Research to Investigate Functional and Scenario
Testing Requirements

STRICOM should encourage additional applied research efforts to understand
the requirements for Functional and Scenario Testing.

The current state of the art for Functional and Scenario Testing is for Subject
Matter Experts (SMEs) to watch the behavior of entities on tactical displays to
judge whether they are performing correctly. Obviously, these SMEs cannot be
expected to verify every critical behavior in a large federation execution. Testing
tools are needed to support this process so that the more detailed and mundane
tests can be carried out in an automated way, allowing the SMEs to concentrate
on observable critical behavior. Additional research efforts need to focus on
requirements for automated testing in these later phases of Federation Testing.

7.2.5 Encourage Basic Research to Develop Approaches for the End-to-
End Federation Testing Automation

STRICOM should encourage basic research addressing the feasibility of end-to-
end automation of the Federation Testing Process.

The concept of the Federation Test Phases making up an automation hierarchy
of data and method relationships was presented briefly in Section 4.2.6. This
approach to specifying, implementing, and testing distributed simulation systems
offers the potential for drastic cost reductions in testing time and resources. In
addition, this level of automation will be critical for the rapid development of
distributed simulation systems using off-the-shelf simulation components.

81

7.2.6 Promote the Practice of Providing Test Procedures with Standards
Proposals

The SIW Testing Forum should actively promote the requirement of providing
test procedures with SISO Standards Proposals.

As has been discussed in the Testing Forum, better standards can be developed
if the standards development groups are thinking about the testability of the
product. Fortunately, the HLA standards will be forwarded with test procedures. If
the RPR FOM proposal is forwarded as an HLA Draft Standard, community effort
will have to go towards converting the DIS Compliance Test Procedures into test
procedures supporting the HLA RPR FOM implementation.

7.2.7 Leverage Testing Research and Practice

Military distributed simulation developers and testers need to make use of
existing research, methods, and tools that have been developed to support
software engineering, software testing, distributed systems development, real-
time software testing, Test and Evaluation, and distributed simulation testing.

The recommendation here is that simulation professionals need to take
advantage of the technical contributions of previous programs, published
research, and tools that have been developed to address some of their issues.
Specifically, software engineering research and methods in testing and especially
distributed software and hardware testing need to be leveraged more fully. The
opportunity exists for the integration of automated testing tools developed in the
general software community to be used to do distributed simulation testing.
Regression testing tools are an immediate opportunity.

7.3 FTS DEVELOPMENT RECOMMENDATIONS

As discussed in Section 5.3, a Federation Testing Process has been proposed
that contain four phases: Application Testing, Integration Testing, Functional
Testing, and Scenario Testing. The Federation Testing System (FTS) was
designed to support this process, and is currently able to directly support
Application Testing and some aspects of Integration Testing.

The next recommended steps for the FTS are to test it with federates and other
tools, and to continue tool integration and development to support Integration
Testing fully and to support the latter phases of Federation Testing (Functional
and Scenario Testing.)

82

7.3.1 Use the FTS to Support Federate and Tool Development

The FTS needs to be exposed to HLA users as much as possible in order to get
the feedback necessary to improve the system. The focus of this alpha/beta
testing effort should be on the federate/tool developer and the federation
integrator.

One of the persistent problems in the development of automated test tools is the
need to "test" the test tool (Clay et al., 1995). FTS currently is undergoing alpha
testing with federates that have implemented the RPR FOM. It will be important
in these early tests to understand that the use of the RPR FOM to achieve
interoperability with HLA is still in its infancy. FTS should not be advertised as a
finished tool, but as one of several early adopters of the HLA and, specifically,
the RPR FOM.

Both HLA federate and tool developers need to interoperate with other federates
during their development and unit testing efforts. FTS should be offered to those
developers who see the need for a flexible test federate to develop their unit
testing stubs (as discussed in an earlier section.)

Several tools and federates have been identified as potential alpha testers for
FTS. Actually, all of the tools involved in the process will be testing each other's
implementations -- essentially bringing each other up to a higher implementation
confidence level. One of the early implementations used already with the FTS is
the IST Gateway (Wood, Petty, Cox, Hofer, & Harkrider, 1997).

The FTS team should take advantage of the opportunity to be certified as HLA
compliant by participating in the HLA Conformance Testing Process described in
Section 4.1.2.

During the early rollout of the FTS, it will be important to create a lab environment
that will promote learning and tool capability improvement. Model lab
environments currently exist at the TASC development site, at STRICOM, and in
GTRI’s Distributed Simulation Systems (DSS) Lab. (The DSS Lab is described in
Section 9.4)

After undergoing initial alpha tests with other early adopters of the RPR FOM,
additional effort is required in several aspects of the FTS, including:

• Expanding support of the RPR FOM to include comprehensive testing of
all objects and interactions (this supports the standing-up of a DIS
federation).

• Expanding support of non-DIS-related federations (this proves FTS value
outside of supporting DIS-legacy systems).

83

• Participating in the early phase of federate development (supporting unit
testing).

• Participating in the early phases of federation development (supporting
Application Testing).

7.3.2 Use the FTS to Support Federation Development

The FTS needs to be used to support development of HLA federations.

Several near-term opportunities exist for developing lessons learned in a
federation development effort, including support of Cameleon, JSIMS, and JADS.
For these efforts, lessons learned in Integration Testing, Functional, and
Scenario Testing will be used to improve the FTS, as well as to help identify the
use of other tools needed in the later phases of Federation Testing. These
lessons learned also will help to improve the data standards needed for
Federation Testing, including Test Procedures, Federation Agreements, and
Object Interaction Protocols (OIPs).

7.3.3 Develop Integration, Functional, and Scenario Testing Capabilities

The FTS should be expanded to support the needs of the latter phases of the
Federation Testing Process (Integration, Functional, and Scenario Testing).

This goal will end up being a long-term effort and will rely on further research on
Functional and Scenario Testing, as well as the formation of more HLA
federations.

84

7.4 TIMELINE

This section introduces a timeline (Figure 7.1) that shows graphically the events
leading up to and including the current state of the FTS.

This timeline also projects future development activities that have not yet been
funded, but are needed to support Integration, Functional, and Scenario Testing.

Federation Testing Timeline
1996 1997 1998 1999 2000 2001 2002

 u DIS Testing Suite (DTS) Supports IEEE 1278 Standard

 u HLA Protofederation Experiments

 u HLA Mandate

 u Application Testing Tools Developed

 u Application Testing Tools Fielded

 u Integration Testing Tools Developed

 u Integration Testing Tools Fielded

u Functional & Scenario Testing
Tools Developed

u Functional & Scenario
Testing Tools Fielded

Figure 7.1. Federation Testing Development Timeline

85

8. REFERENCES

Acusoft. (1997a). Federation Test System (FTS) Application Testing
Process Requirements Definition (Contract N61339-95-D-0006). Orlando, FL:
STRICOM.

Acusoft. (1997b). Federation Test System (FTS) Application Testing
Process System/Subsystem Design Description (S/SDD) (Contract N61339-95-
D-0006). Orlando, FL: STRICOM.

Braudaway, W. K., & Harkrider, S. M. (1997, March 3-7). Implementation
of the High Level Architecture into DIS-Based Legacy Simulations. Paper
presented at the 1997 Spring Simulation Interoperability Workshop, Orlando, FL.

Clay, B., Roberts, D. W., & Stueve, J. (1995, March 13-17). Real Time
Distributed Simulation Integration Testing. Paper presented at the 12th
Workshop on Standards for the Interoperability of Defense Simulations, Orlando,
FL.

Dahmann, D. J. (1998, March 9-13). Persistent Federations. Paper
presented at the 1998 Spring Simulation Interoperability Workshop, Orlando, FL.

Dahmann, J. S., Olszewski, J., Briggs, R., Richardson, R., Weatherly, R.
M., Calvin, J., & Zimmerman, P. (1997, September 8 - 12). High Level
Architecture (HLA) Performance Framework. Paper presented at the 1997 Fall
Simulation Interoperability Workshop, Orlando, FL.

DMSO. (1996a). DoD VV&A Recommended Practices Guide,
<http://www.dmso.mil/docslib/mspolicy/vva/rpg/> .

DMSO. (1996b). FED Process Boxes,
<http://hla.dmso.mil/hla/federation/fedep/fed/boxes.html> : DMSO.

DMSO. (1996c). High Level Architecture Federation Development and
Execution Process (FEDEP) Model, Version 1.0 . Alexandria, VA: Defense
Modeling and Simulation Office.

DMSO. (1996d). High Level Architecture Management Object Model,
Version 0.2 : Defense Modeling and Simulation Office.

DMSO. (1997a). Federate Test Tools Operator Guide, Version 1.1. Paper
presented at the 1997 Fall Simulation Interoperability Workshop, Orlando, FL.

86

DMSO. (1997b). High Level Architecture Federation Development and
Execution Process (FEDEP) Model, Version 1.1 . Alexandria, VA: Defense
Modeling and Simulation Office.

DMSO. (1997c). High Level Architecture Interface Specification, Version
1.1 .

DMSO. (1997d). High Level Architecture Object Model Template Data
Interchange Format, Version 1.1 . Alexandria, VA: Defense Modeling and
Simulation Office.

DMSO. (1997e). High Level Architecture Rules, Version 1.2 : Defense
Modeling and Simulation Office.

DoD. (1996). DoD Instruction 5000.61,"DoD Modeling and Simulation
(M&S) Verification, Validation, and Accreditation (VV&A),
<http://www.dmso.mil/docslib/mspolicy/vva/dodifin.doc> .

Graffagnini, J. (1997, March 3-7). An Automated Approach to HLA
Testing. Paper presented at the 1997 Spring Simulation Interoperability
Workshop, Orlando, FL.

Hansen, S. (1994, March 14-18). War Breaker DIS Integration & Testing --
Past ...Present...Future. Paper presented at the 10th Workshop on Standards for
the Interoperability of Defense Simulations, Orlando, FL.

Hyon, T. C., & Seidel, D. W. (1997, March 3-7). Design and
Implementation of High Level Architecture (HLA) Management Object Model
(MOM) in the RTI Version F.0. Paper presented at the 1997 Spring Simulation
Interoperability Workshop, Orlando, FL.

IEEE. (1993). IEEE Standard for Information Technology -- Protocols of
Distributed Interactive Simulation Applications, Version 1.0 (IEEE Std 1278-
1993). New York.

IEEE. (1997a). IEEE Home Page,
<http://hla.dmso.mil/hla/federation/fedep/fed/boxes.html> .

IEEE. (1997b). IEEE Recommended Practice for Distributed Interactive
Simulation--Verification, Validation,and Accrediation (IEEE Std 1278.4-1997).
New York.

87

Kanewske, C., & Fine, S. (1998, March 9-13). STOW Systems Integration,
Tools and Applications. Paper presented at the Spring '98 Simulation
Interoperability Workshop, Orlando, FL.

Knightson, K. (1993). OSI Protocol Conformance Testing: IS 9646
Explained. New York: McGraw-Hill.

Law, A. M., & Kelton, W. D. (1991). Building Valid and Credible Simulation
Models, Simulation Modeling and Analysis (2nd Edition ed., pp. pp. 298-324).
New York: McGraw-Hill, Inc.

Lewis, R. (1997, March). A Generic Model for Verification, Validation, and
Accreditation (VV&A) of Advanced Distributed Simulations (ADS) Used for Test
and Evaluation (T&E). Paper presented at the the 1997 Spring Simulation
Interoperability Workshop, Orlando, FL.

Long, R., McAuliffe, M., & Liu, J. (1996, March 11-15). DIS Capabilities
Statement. Paper presented at the 14th Workshop on Standards for the
Interoperability of Defense Simulations, Orlando, FL.

Loper, M. L. (1993, March 22-26). Recommendations for DIS Based on
Testing Performed at the I/ITSEC Demonstrations. Paper presented at the The
Eighth Workshop on Standards for the Interoperability of Defense Simulations,
San Antonio, TX.

Loper, M. L., Goldiez, B., & Smith, S. (1993a, November 29 - December
2). The 1992 I/ITSEC Distributed Interactive Simulation Interoperability
Demonstration. Paper presented at the 15th Interservice/Industry Training
Systems and Education Conference, Orlando, FL.

Loper, M. L., Goldiez, B., Smith, S., Ng, H., Craft, M., Petty, M., Bulumulle,
G., & Lisle, C. (1993b). I/ITSEC DIS Interoperability Demonstration Test
Procedures and Results (IST-TR-93-04). Orlando, FL: Institute for Simulation and
Training.

McAuliffe, M., Long, R., Liu, J., Hays, J., & Nocera, D. (1995, March 13-
17). Testing Applications for DIS. Paper presented at the 12th Workshop on
Standards for the Interoperability of Defense Simulations, Orlando, FL.

McAuliffe, M., Long, R., Liu, J., Hays, J., & Nocera, D. (1996, March 11-
15). DIS Test Suite (DTS). Paper presented at the 14th Workshop on Standards
for the Interoperability of Defense Simulations, Orlando, FL.

88

McKee, D. L. (1998, March 9-13). Compensating for Latency Variations in
Air-to-Air Missile T&E Using Live Aircraft Linked to a Missile HWIL Simulation.
Paper presented at the 1998 Spring Simulation Interoperability Workshop,
Orlando, FL.

McLean, T., & Loper, M. (1997). Management Object Model Extension to
Support Service Logging in Federation Compliance Testing (See DMSO web
page < http://hla.dmso.mil/>). Alexandria, VA: Georgia Institute of Technology in
Support of DMSO.

Morley, D. S., & McLean, T. (1995, September 18-22). Issue Management
Database System. Paper presented at the 13th Workshop on Standards for the
Interoperability of Defense Simulations, Orlando, FL.

Page, E. H., & Babineau, W. E. (1997, September 8-12). The ALSP Joint
Training Confederation: A Case Study of Federation Testing. Paper presented at
the 1997 Fall Simulation Interoperability Workshop, Orlando, FL.

Roberts, D. W. (1995, April). Integration Test of Distributed Interactive
Simulation Exercises. Paper presented at the SPIE International Symposium -
Aerospace and Defense Electronic Systems Technical Conference, Orlando, FL.

Roberts, D. W., Collins, T. R., Esslinger, D. I., Horst, M. M., Johnson, T.
B., Marks, J. R., McLean, A. L. M. T., & Wallace, J. C. (1997a). High Level
Architecture Simulation Interface Phase One Final Technical Report (GTRI-TR-
97-E8604-102F). Atlanta, GA: Georgia Institute of Technology (GTRI), Georgia
Institute of Technology.

Roberts, D. W., Horst, M., Old, J. A., Lashley, T., Freeman, R., Mullally,
K., Long, R., & Gajkowski, B. J. (1997b, March). The HLA Federation Testing
Process (Presentation). Paper presented at the 1997 Fall Simulation
Interoperability Workshop, Orlando, FL.

Schach, S. R. (1990). Testing, Software Engineering (pp. pp. 110-168).
Homewood, IL: Richard D. Irwin, Inc. and Aksen Associates, Inc.

Scrudder, R. O., & Sheehan, J. H. (1997, March 3-7). HLA FOM/SOM
Content Standards. Paper presented at the 1997 Spring Simulation
Interoperability Workshop, Orlando, FL.

Shen, D. T., Loper, M. L., & Ng, H. K. (1992, November 2-4). DIS
Application Protocol Testing Using a Formal Description Technique. Paper
presented at the 14th Interservice/Industry Training Systems and Education
Conference, Orlando, FL.

89

Sjouke. (1997). MSC Home Page,
<http://www.win.tue.nl/cs/fm/sjouke/msc.html> .

Vanzant-Hodge, A. (1994, March 14-18). IST Test Tools (Presentation in
the DIS Testing SIG). Paper presented at the 10th Workshop on the Standards
for the Interoperability of Defense Simulations, Orlando, FL.

Vanzant-Hodge, A., Cheung, S., & Smith, S. (1994, November 28 -
December 1). Testing Conformance for Distributed Interactive Simulation (DIS)
Standards. Paper presented at the 16th Interservice/Industry Training Systems
and Education Conference, Orlando, FL.

White, E. (1998, March 9-13). A Conceptual Model for Simulation Load
Balancing. Paper presented at the 1998 Spring Simulation Interoperability
Workshop, Orlando, FL.

Wood, D. D., Petty, M. D., Cox, A., Hofer, R., & Harkrider, S. M. (1997,
March 3-7). HLA Gateway Status and Future Plans. Paper presented at the 1997
Spring Simulation Interoperability Workshop.

Wuerfel, R. (1998, March 9-13). A Comparison of HLA and DIS Real-Time
Performance. Paper presented at the 1998 Spring Simulation Interoperability
Workshop, Orlando, FL.

Zimmerman, P. M., & Harkrider, S. (1997, September). FEDEP Phase III
Examination: Federation Testing, Execution, and Feedback. Paper presented at
the 1997 Fall Simulation Interoperability Workshop, Orlando, FL.

90

This Page Intentionally Left Blank

91

9. APPENDIX

9.1 MODSAF RDR

This section provides the details of the ModSAF libreader formats described in
Section 5.2.2.1.

Integer 1 2 3 1634 0x78fffe 0xFF78FE 0X78fffe 0o446 0O664

Real 2.0 35.67 1.634e+3

Symbol foo bar67 baz-foo foo_bar "a+b" "1.0" 0o8000

Array (1 2 3) (1.1 2 3.1 bar67) (tank (weapons 25mm) (weight 25.0))

Table 9.1. ModSAF libreader Data Items

typedef union reader_union {

char *charptr;

int32 integer;

float32 real;

union reader_union *array;

} READER_UNION;

Table 9.2. ModSAF Data Structure Format

;; $RCSfile$ $Revision$ $State$

;;

;; This file specifies information about how routemap should calculate

;; corridors for various terrain databases. The "default"

;; values are used if the database name is not found.

;;

;; Also in this file are the soil types which are considered obstacles.

;; The format is as follows:

;; (

;; (databases

;; (<database name> (max_error <maximum deviation from the actual
data>)

;; (max_corridor <maximum corridor length>)

;;)

;; ...

;;)

;; (soils

92

;; (boulders <boulder soil> <boulder soil> ...)

;; (lakes <lake soil> <lake soil> ...)

;;)

;;)

(

 (databases ("default" (max_error 50.0)

 (max_corridor 1000.0)

 (max_grow 0.2)

 (max_shrink 0.33)

 (min_expansion_dist 50.0)

 (add_point_distance 0.0)

 (add_point_width_ratio 0.0)

)

 ("knox" (max_error 25.0)

 (max_corridor 500.0)

 (max_grow 0.2)

 (max_shrink 0.33)

 (min_expansion_dist 50.0)

 (add_point_distance 0.0)

 (add_point_width_ratio 0.0)

)

 ("hunter" (max_error 50.0)

 (max_corridor 1000.0)

 (max_grow 0.2)

 (max_shrink 0.33)

 (min_expansion_dist 50.0)

 (add_point_distance 0.0)

 (add_point_width_ratio 0.0)

)

)

;; (soils (lakes SOIL_DEEP_WATER)

;; (boulders SOIL_NO_GO)

;;)

;; We can't use macros here because they are defined after the routemap
is

;; created

 (soils (lakes 4)

93

(boulders 15)

)

)

Table 9.3. Sample ModSAF .rdr file:

94

9.2 MESSAGE SEQUENCE CHART (MSC) DEPICTING A FIRE AND DETONATE SERIES
BETWEEN TWO FEDERATES

This section provides a detailed example of the MSC textual format described in
Section 5.1.2.

MSCDOCUMENT ;

MSC ;

INSTANCE Federate 1 ;

 OUT Publish Object Class (MilitaryPlatformEntity, Position,
DamageState,...) TO RTI ;

 OUT Subscribe Object Class Attribute (MilitaryPlatformEntity,
Position, DamageState...) TO RTI ;

 OUT Update Attribute Values (MilitaryPlatformEntity1, Position,
DamageState,…) TO RTI ;

 IN Reflect Attribute Values (MilitaryPlatformEntity2, Position,
DamageState,…) FROM RTI ;

 OUT Publish Interaction Class (WeaponFire) TO RTI ;

 OUT Publish Interaction Class (Munition Detonation) TO RTI ;

 OUT Send Interaction (WeaponFire, EventID, FiringLocation,…) TO RTI ;

 OUT Send Interaction (Munition Detonation, EventID, FiringLocation,…)
TO RTI ;

 IN Receive Attribute Values (MilitaryPlatformEntity2, Position,
DamageState,...) FROM RTI ;

ENDINSTANCE;

INSTANCE RTI ;

95

 CONCURRENT ;

 IN Publish Object Class (MilitaryPlatformEntity, Position,
DamageState,...) FROM Federate 1 ;

 IN Subscribe Object Class Attribute (MilitaryPlatformEntity,
Position, DamageState,...) FROM Federate 2 ;

 IN Subscribe Object Class Attribute (MilitaryPlatformEntity,
Position, DamageState,...) FROM Federate 1 ;

 IN Publish Object Class (MilitaryPlatformEntity, Position,
DamageState...}) FROM Federate 2 ;

 ENDCONCURRENT ;

•

•

•

 OUT Receive Interaction (Munition Detonation, EventID,
FiringLocation,…) TO Federate 2 ;

 IN Update Attribute Values (MilitaryPlatformEntity2, Position,
DamageState,...) FROM Federate 2 ;

 OUT Receive Attribute Values (MilitaryPlatformEntity2, Position,
DamageState,..) TO Federate 1 ;

ENDINSTANCE;

INSTANCE Federate 2 ;

OUT Subscribe Object Class Attribute (MilitaryPlatformEntity, Position,
DamageState,...) TO RTI ;

•

•

•

ACTION Process

 Detonation

 Effects

96

 OUT Update Attribute Values (MilitaryPlatformEntity2, Position,
DamageState,…}) TO RTI ;

ENDINSTANCE;

ENDMSC;

ENDMSCDOCUMENT;

Table 9.4. Abridged Textual Representation of a Message Sequence Chart
(MSC) Depicting a Fire and Detonate Series between Two Federates

97

9.3 FTS TEST PROCEDURES EXAMPLE

This section provides a detailed example of the Test Procedure format described
in Section 5.2.3.1.

<TP> 1.1 Update Attributes: 00001 1.1.1 Update PhysicalEntity
Appearance Attribute.

<INIT_COND>

The FTS will subscribe to all of the attributes in the PhysicalEntity
class.

The FUT will publish all of attributes in the PhysicalEntity class that
it is capable of updating.

</INIT_COND>

<REQS>

Each Federate shall update the their appearances attributes in
accordance with PhysicalEntity class of the RPR FOM Version 0.1.5.

</REQS>

<CAPS>

The Federate is capable of updating their appearances attributes in the
PhysicalEntity class.

</CAPS>

<SCENARIO>

The FUT will update the appearance attributes in the PhysicalEntity
class that it is capable of updating.

The FTS will analyze the updated attributes and ensure that the
attribute values correspond to the RPR FOM V0.1.5.

</SCENARIO>

<CRITERIA>

PASS: FUT correctly updated PhysicalEntity appearance attributes in
accordance with the RPR ROM V0.1.5.

FAIL: FUT incorrectly updated PhysicalEntity appearance attributes in
accordance with the RPR ROM V0.1.5.

</CRITERIA>

<PAGE>

<TITLE>

Update PhysicalEntity Appearance Attribute. - Page 1

</TITLE>

<FUT_INSTR>

Ensure that your simulation is publishing the PhysicalEntity Attributes
that it is capable of updating.

98

Press INSTR COMPLETE.

</FUT_INSTR>

</PAGE>

<PAGE>

<TITLE>

Update PhysicalEntity Appearance Attribute. - Page 2

</TITLE>

<FUT_INSTR>

Manipulate your simulation to update all of the appearance attributes
in the PhysicalEntity class that it is capable of updating.

Press INSTR COMPLETE.

</FUT_INSTR>

<ANALYSIS_CUE>

1_1_1_AFscript1.afs

</ANALYSIS_CUE>

</PAGE>

</TP>

Table 9.4. FTS Test Procedure Example

99

9.4 DISTRIBUTED SIMULATION SYSTEMS (DSS) LAB

This section describes the DSS Lab. This example of a lab environment should
be useful for federation developers who need to create a working environment for
development and testing.

9.4.1 DSS Lab Environment Setup for Federation Tests

One of the first priorities in forming the Distributed Simulations Systems (DSS)
group at GTRI was to develop a lab to support our research projects. The lab
supports several different platforms from Silicon Graphics and SUN to Windows
NT. The idea is to have access to an environment for such things as software
testing (including the Runtime Infrastructure (RTI)) and developing and/or
supporting a federation. Our lab also is an ideal environment to test ideas and
support Federation Testing.

9.4.1.1 Multiple RTI Versions

The RTI has been in use in the DSS lab since the first release became available.
We have followed its progress, installing and using each of the new versions as
they were released, and using these new versions to upgrade our test tools, the
Georgia Tech protoFederation (GTpF), the HLA Distributed Simulation Interface
Framework (DSIF), and several simple test federates. The following versions of
the RTI are installed in the DSS lab:

• RTI F.0 - "familiarization" release that implemented a subset of
Interface Specifications (IFSpec) 1.1

• RTI 1.0.1 - the first official release of the RTI for IFSpec. 1.1

• RTI 1.0.2 - fixed memory and requestLBTS bugs

• RTI 1.0.3 - fixed MOM-related bugs and an NT time-management bug

• RTI 1.3 - all HLA Interface Spec 1.3 services, Sun/Solaris 2.4

Because of our involvement in defining the Management Object Model (MOM),
we also have had access to intermediate, developmental versions, which we
have installed and used to implement and test the HLA Compliance Testing
tools. These versions included increments between 1.0.1 and 1.0.2, and
between 1.0.2 and 1.0.3. They also include preliminary versions of the RTI in
development for IFSpec 1.3.

100

9.4.1.2 DIS to HLA Migration

As part of our commitment to staying informed about the latest developments in
the distributed simulation domain, we stay abreast of the latest releases of all
different types of software, including both ModSAF 3.0 and the Distributed
Interactive Simulation (DIS) Test Suite (DTS). The DSS lab is in position to
support an HLA version of ModSAF and the Federation Testing System (FTS).
Also, because our lab has access to tools such the Aegis OMDT, it is an ideal
environment to support Federation Testing.

9.4.1.3 JMASS and Threat Radar Simulation Federates Used in IRAD
Project

The Georgia Tech protoFederation (GTpF) was developed for the HLA
Simulation Interface Internal Research and Development (IRAD) Project, which
focused on developing an understanding of how legacy simulations should be
adapted for HLA use. This project is discussed in detail in the "High Level
Architecture Simulation Interface, Phase One Final Technical Report" (Roberts et
al., 1997a). The DMSO HLA Federation Development Process (FEDEP)
(DMSO, 1996c) was used as a guideline for development. A survey of GTRI
simulations was conducted to identify candidate simulations for an HLA
federation. From this survey, two legacy simulations were selected and modified
to interoperate using the RTI. The simulations used were the Target Engagement
Radar (TER) simulator, developed in GTRI’s System Development Laboratory
(SDL), and the radar propagation and target backscatter models from the Joint
Modeling and Simulation System (JMASS), exercised in GTRI’s Electronic
Systems Laboratory (ELSYS). In addition, the federation manager and data
logging tools used in GTRI’s Information Technology and Telecommunications
Laboratory (ITTL) contributed to the federation.

The GTpF has been successfully integrated and executed. Since neither of the
legacy simulations have graphical display capabilities for assessing the collected
data, additional tools are under development to reduce and analyze the data and
produce graphical displays.

Several lessons were learned from the federation development efforts,
particularly in the areas of:

• guidelines for Simulation Object Model (SOM) and Federation Object
Model (FOM) development

• effects of federation design on performance

• issues with federation initialization, data formats, and time management

These lessons are guiding the design and development of a simulation interface
framework in Phase Two of this project.

101

9.4.2 HLA Distributed Simulation Interface Framework (DSIF)

One of the lessons learned from the first-year efforts of the HLA IRAD project is
that creating HLA federate simulations currently is more difficult than necessary.
The RTI API provides an abstraction from the communications layer of
distributed simulation. However, there are many common tasks for which code
must be written to use the RTI.

All federates must join and resign from the federation execution, initialize timing
parameters, add and remove items from HandleValuePairSets, and convert data
between transportation representation and native platform representation. Many
of these tasks can be implemented once, then reused in other simulations. Code
generation can tailor the other common tasks to the object model for a particular
simulation.

In addition, there is room for a higher level of abstraction from the RTI API and
HLA IFSpec, which is a distributed simulation paradigm that embodies common
principles of distributed simulation. In this framework, the proposed paradigm is
based on the concept of a shared universe of objects, which have persistent
state as described by their attributes, and events (HLA interactions), which may
occur but are transitory. Each simulation has knowledge of all shared objects,
but is responsible only for updating the object attributes it owns. Each simulation
also may add additional internal state information to its knowledge of the shared
objects. The main run loop for each simulation has three steps:

• update the internal state of all objects

• synchronize with the universe (changes made in the simulation are sent
out to the universe, and changes made by other simulations in the
universe are received)

• increment time

The Distributed Simulation Interface Framework (DSIF) implements this
distributed simulation paradigm using foundation classes and code generation.
The foundation classes are intended to implement all distributed simulation tasks
that are independent of an object model. They currently abstract from RTI
handle mapping and HandleValuePairSets, provide RTI request and exception
handling, and provide a common method for implementing data conversion for
each data type. This approach minimizes the code changes required to
experiment with different data representations. The foundation classes also
include maskable message logging, which provides highly configurable data
logging and debugging output options. The code generator implements a SOM
or FOM by generating code for classes derived from the foundation classes to
implement the specific object model. The user is then responsible only for
providing his domain-specific object model and the behavior code for his objects.

102

9.4.2.1 Current Status

An alpha version of the DSIF currently is implemented in C++ for the RTI 1.0.3
on a Solaris platform. In this version, the foundation classes implement about
two-thirds of the services in HLA IFSpec 1.1 and the code generator generates
object and event classes from either a SOM or FOM. Alpha testing is scheduled
for Spring 1998 and includes use of the DSIF with a FORTRAN legacy
simulation. Future plans for the framework include:

• ports to C++ for Windows NT and to Java

• implementation of remaining IFSpec 1.1 services and evolution to IFSpec
1.3

• implementation of a common simulation configuration mechanism

• additional code generation using the Conformance Statement

• scenario generation from the Fedex Planning Workbook (FPW)

• expansion of timing model support

9.4.2.2 Relevance to Federation Testing

The DSIF and the concepts behind it are important to Federation Testing for
several reasons. Using a framework to build simulations decreases the amount
of time needed to test each individual simulation. Functionality provided by the
framework can be tested extensively once. This functionality does not need to
be re-tested in each simulation developed using the framework. The framework
also will standardize input and output data file types and formats, which will, in
turn, standardize test suite data. Also, using a framework can simplify usability of
simulations. Once someone learns how to set up one framework-based
simulation, the next framework-based simulation will be easier to use because
the same types and formats of files are used, even though the number of files
and their contents will be different.

103

9.5 ACRONYM LIST

AAI - All-Actor Integration

ADS - Advanced Distributed Simulation

ALSP - Aggregate Level Simulation Protocol

AMG - Architecture Management Group

BNF - Bacus Naur Format

C4I - Command, Control, Communications, Computers, and Intelligence

CA - Certification Agent

COO - Concept of Operation

CS - Capability Statement

CSR - Certification Summary Report

DIF - Data Interchange Format

DIS - Distributed Interactive Simulation

DMSO - Defense Modeling and Simulation Office

DSIF - Distributed Simulation Interface Framework

DSS - Distributed Simulation Systems

DTS - DIS Test Suite

ELSYS - Electronic Systems Laboratory

EMF - Exercise Management & Feedback

FEDEP - Federation Development and Execution Process

104

FII - Functional Interface Integration

FOM - Federation Object Model

FPW - Federation Execution (Fedex) Planning Workbook

FRED - Federation Required Execution Details

FTAM ISS - Federation Test and Management Integration Support & Study

FTS - Federation Testing System

FUT - Federate Under Test

GTpF - Georgia Tech protoFederation

HLA - High Level Architecture

IDT - Integrated Development Team

IEEE - The Institute of Electrical & Electronics Engineers

IFSpec - Interface Specification

IPT - Integrated Product Team

ITTL - Information Technology and Telecommunications Laboratory

JMASS - Joint Modeling and Simulation System

JTC - Joint Training Confederation

LHS - left-hand side

M&S - Models and Simulations

MOM - Management Object Model

MSC - Message Sequence Chart

105

MSRR - Model and Simulation Resource Repository

OIP - Object Interaction Protocol

OMDD - Object Model Data Dictionary

OMDT - Object Model Development Tools

OML - Object Model Library

OMT - Object Model Template

OPFOR - opposing force

PROC - Federation Development Process Forum

RepSOM - Representative SOM

RHS - right-hand side

RPR FOM - Real-Time Platform Reference FOM

RTI - RunTime Infrastructure

S/SDD - System/Subsystem Design Description

SAMs - Surface-to-air-missiles

SDL - System Development Laboratory

SISO - Simulation Interoperability Standards Organization

SIW - Simulation Interoperability Workshop

SOM - Simulation Object Model

T&E - Test and Evaluation

TER - Target Engagement Radar

106

USD(A&T) - Under Secretary of Defense for Acquisition and Technology

UTC - Coordinated Universal Time

VV&A - Verification, Validation, and Accreditation

